scholarly journals Structural Attack (and Repair) of Diffused-Input-Blocked-Output White-Box Cryptography

Author(s):  
Claude Carlet ◽  
Sylvain Guilley ◽  
Sihem Mesnager

In some practical enciphering frameworks, operational constraints may require that a secret key be embedded into the cryptographic algorithm. Such implementations are referred to as White-Box Cryptography (WBC). One technique consists of the algorithm’s tabulation specialized for its key, followed by obfuscating the resulting tables. The obfuscation consists of the application of invertible diffusion and confusion layers at the interface between tables so that the analysis of input/output does not provide exploitable information about the concealed key material.Several such protections have been proposed in the past and already cryptanalyzed thanks to a complete WBC scheme analysis. In this article, we study a particular pattern for local protection (which can be leveraged for robust WBC); we formalize it as DIBO (for Diffused-Input-Blocked-Output). This notion has been explored (albeit without having been nicknamed DIBO) in previous works. However, we notice that guidelines to adequately select the invertible diffusion ∅and the blocked bijections B were missing. Therefore, all choices for ∅ and B were assumed as suitable. Actually, we show that most configurations can be attacked, and we even give mathematical proof for the attack. The cryptanalysis tool is the number of zeros in a Walsh-Hadamard spectrum. This “spectral distinguisher” improves on top of the previously known one (Sasdrich, Moradi, Güneysu, at FSE 2016). However, we show that such an attack does not work always (even if it works most of the time).Therefore, on the defense side, we give a straightforward rationale for the WBC implementations to be secure against such spectral attacks: the random diffusion part ∅ shall be selected such that the rank of each restriction to bytes is full. In AES’s case, this seldom happens if ∅ is selected at random as a linear bijection of F322. Thus, specific care shall be taken. Notice that the entropy of the resulting ∅ (suitable for WBC against spectral attacks) is still sufficient to design acceptable WBC schemes.

Author(s):  
Sabyasachi Pramanik ◽  
Ramkrishna Ghosh ◽  
Mangesh M. Ghonge ◽  
Vipul Narayan ◽  
Mudita Sinha ◽  
...  

In the information technology community, communication is a vital issue. And image transfer creates a major role in the communication of data through various insecure channels. Security concerns may forestall the direct sharing of information and how these different gatherings cooperatively direct data mining without penetrating information security presents a challenge. Cryptography includes changing over a message text into an unintelligible figure and steganography inserts message into a spread media and shroud its reality. Both these plans are successfully actualized in images. To facilitate a safer transfer of image, many cryptosystems have been proposed for the image encryption scheme. This chapter proposes an innovative image encryption method that is quicker than the current researches. The secret key is encrypted using an asymmetric cryptographic algorithm and it is embedded in the ciphered image using the LSB technique. Statistical analysis of the proposed approach shows that the researcher's approach is faster and has optimal accuracy.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 44 ◽  
Author(s):  
Sameh Askar ◽  
Abdel Karawia ◽  
Abdulrahman Al-Khedhairi ◽  
Fatemah Al-Ammar

In the literature, there are many image encryption algorithms that have been constructed based on different chaotic maps. However, those algorithms do well in the cryptographic process, but still, some developments need to be made in order to enhance the security level supported by them. This paper introduces a new cryptographic algorithm that depends on a logistic and two-dimensional chaotic economic map. The robustness of the introduced algorithm is shown by implementing it on several types of images. The implementation of the algorithm and its security are partially analyzed using some statistical analyses such as sensitivity to the key space, pixels correlation, the entropy process, and contrast analysis. The results given in this paper and the comparisons performed have led us to decide that the introduced algorithm is characterized by a large space of key security, sensitivity to the secret key, few coefficients of correlation, a high contrast, and accepted information of entropy. In addition, the results obtained in experiments show that our proposed algorithm resists statistical, differential, brute-force, and noise attacks.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Qi Zhang ◽  
An Wang ◽  
Yongchuan Niu ◽  
Ning Shang ◽  
Rixin Xu ◽  
...  

Identity-based cryptographic algorithm SM9, which has become the main part of the ISO/IEC 14888-3/AMD1 standard in November 2017, employs the identities of users to generate public-private key pairs. Without the support of digital certificate, it has been applied for cloud computing, cyber-physical system, Internet of Things, and so on. In this paper, the implementation of SM9 algorithm and its Simple Power Attack (SPA) are discussed. Then, we present template attack and fault attack on SPA-resistant SM9. Our experiments have proved that if attackers try the template attack on an 8-bit microcontrol unit, the secret key can be revealed by enabling the device to execute one time. Fault attack even allows the attackers to obtain the 256-bit key of SM9 by performing the algorithm twice and analyzing the two different results. Accordingly, some countermeasures to resist the three kinds of attacks above are given.


The wireless sensor network is a large number of tiny nodes installed in insecure environment for monitoring, gathering and transferring data and are prone to security threats for its limited resources. In order to transmit the data and to protect from different attacks in the network, security is maintained. To achieve confidentiality, authenticity and authorization of data which secure the data from different attacks cryptographic algorithm were used. The number of keys used in the cryptographic algorithm determines the security of the data. Cryptographic algorithms are broadly classified into two types symmetric cryptography and asymmetric cryptography. In the symmetric key cryptographic algorithm, a secret key is shared in the network and in asymmetric key cryptographic algorithm two keys are used for data security. In wireless sensor network, symmetric key cryptography required more storage to store the key among all the nodes of the network and in asymmetric key cryptography more computation time is require for the data encryption and decryption. To avoid memory and computation overhead we proposed a hybrid cryptosystem to handle the security in the wireless sensor network. Initially shared key is exchanged among nodes using ECC which is a public key algorithm. Data is encrypted and decrypted using RC4 symmetric key algorithm. Various performance measures such as time taken for encryption and decryption process and memory needed for storing cipher text data. The proposed model shows faster encryption of data and takes less memory for key storage as compared to the traditional approach.


Author(s):  
Vinoth Kumar ◽  
V. R. Niveditha ◽  
V. Muthukumaran ◽  
S.Satheesh Kumar ◽  
Samyukta D. Kumta ◽  
...  

Light fidelity (Li-Fi) is a technology that is used to design a wireless network for communication using light. Current technology based on wireless fidelity (Wi-Fi) has some drawbacks that include speed and bandwidth limit, security issues, and attacks by malicious users, which yield Wi-Fi as less reliable compared to LiFi. The conventional key generation techniques are vulnerable to the current technological improvement in terms of computing power, so the solution is to introduce physics laws based on quantum technology and particle nature of light. Here the authors give a methodology to make the BB84 algorithm, a quantum cryptographic algorithm to generate the secret keys which will be shared by polarizing photons and more secure by eliminating one of its limitations that deals with dependency on the classical channel. The result obtained is sequence of 0 and 1, which is the secret key. The authors make use of the generated shared secret key to encrypt data using a one-time pad technique and transmit the encrypted data using LiFi and removing the disadvantage of the existing one-time pad technique.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Chunyuan Liu ◽  
Qun Ding

Low-dimensional chaotic mappings are simple functions that have low computation cost and are easy to realize, but applying them in a cryptographic algorithm will lead to security vulnerabilities. To overcome this shortcoming, this paper proposes the coupled chaotic system, which coupled the piecewise and Henon mapping. Simulation results indicate that the novel mapping has better complexity and initial sensitivity and larger key space compared with the original mapping. Then, a new color image encryption algorithm is proposed based on the new chaotic mapping. The algorithm has two processes: diffusion and confusion. In this scheme, the key is more than 2 216 , and SSIM and PSNR are 0.009675 and 8.6767, respectively. The secret key is applied in the shuffling and diffusion. Security analysis indicates that the proposed scheme can resist cryptanalytic attacks. It has superior performance and has high security.


2020 ◽  
Vol 10 (10) ◽  
pp. 3394
Author(s):  
Ju-Hwan Kim ◽  
Bo-Yeon Sim ◽  
Dong-Guk Han

The major factors that determine the performance of the second-order correlation power analysis (SOCPA) include the accuracy of the power model and the correlation between the hypothetical intermediate value and preprocessed power consumption. Because of the tradeoff between the accuracy and correlation, the correlation coefficient of the general SOCPA using 8-bit SubBytes output is only up to 0.35. Therefore, based on the operational characteristic of the cryptographic algorithm, we propose to find a special intermediate value, called sparse intermediate value (SIV). The SIV significantly improves the performance of the SOCPA because it accurately models the power consumption while the correlation coefficient is 1.00. Further, the experimental results on OpenSSL advanced encryption standard (AES) show that the SIV-based SOCPA can disclose the entire secret key with only about a quarter of the power trace required by the general SOCPA.


2019 ◽  
Vol 8 (4) ◽  
pp. 11771-11776

This system provides an insight into developing a distributed system which is secure, robust and user friendly. This thesis suggests a design and implementation of a digital envelope that combines the hashing algorithm of MD5, the symmetric key algorithm of AES and the asymmetric key algorithm of Hyper Elliptic Curve. A hybrid algorithm is designed, combining the best of both AES and ECC over GF(p) cryptography. The MD5 hash algorithm is adopted to ensure integrity of the data. Cryptography (HECC). This paper discusses securing the data in clouds through implementing the key for encryption and decryption using hyper elliptical curve cryptography. The focus is on Advanced Encryption Standard (AES), the most commonly used secret key cryptographic algorithm, and Hyper Elliptic Curve Cryptography (HECC), public key cryptographic algorithms which have gained popularity in the recent years and are replacing traditional public key cryptosystems, such as RSA and ECC. Such techniques are necessary in order to use high security cryptographic algorithms in real world applications.


Author(s):  
Ashwaq T. Hashim ◽  
Ahmed M. Hasan ◽  
Hayder M. Abbas

This paper attempts to build up a simple, strong and secure cryptographic algorithm. The result of such an attempt is “RC6-Cascade” which is 320-bits RC6 like block cipher. The key can be any length up to 256 bytes. It is a secret-key block cipher with precise characteristics of RC6 algorithm using another overall structure design. In RC6-Cascade, cascading of F-functions will be used instead of rounds. Moreover, the paper investigates a hardware design to efficiently implement the proposed RC6-Cascade block cipher core on field programmable gate array (FPGA). An efficient compact iterative architecture will be designed for the F-function of the above algorithm. The goal is to design a more secure algorithm and present a very fast encryption core for low cost and small size applications.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1508
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Qiang Li ◽  
Liang Dong ◽  
...  

Cryptographic algorithm is the most commonly used method of information security protection for many devices. The secret key of cryptographic algorithm is usually stored in these devices’ registers. In this paper, we propose an electromagnetic information leakage model to investigate the relationship between the electromagnetic leakage signal and the secret key. The registers are considered as electric dipole models to illustrate the source of the electromagnetic leakage. The equivalent circuit of the magnetic field probe is developed to bridge the output voltage and the electromagnetic leakage signal. Combining them, the electromagnetic information leakage model’s function relationship can be established. Besides, an electromagnetic leakage model based on multiple linear regression is proposed to recover the secret key and the model’s effectiveness is evaluated by guess entropy. Near field tests are conducted in an unshielded ordinary indoor environment to investigate the electromagnetic side-channel information leakage. The experiment result shows the correctness of the proposed electromagnetic leakage model and it can be used to recover the secret key of the cryptographic algorithm.


Sign in / Sign up

Export Citation Format

Share Document