scholarly journals The Effect of Diopatra claparedii Grube, 1878 Aqueous Extract on Chang Liver and Human Primary Glioblastoma (U-87) Cell Lines

Author(s):  
Amirah Idris ◽  
Izwandy Idris ◽  
Wan Iryani Wan Ismail

Due to the distinctive regenerative ability of Diopatra claparedii Grube, 1878, the local marine polychaete has the potential as a cellular growth agent. In this study, the growth effect was investigated in normal cells and cancer cells. Different concentrations (0-100mg/mL) of D. claparedii aqueous extract were tested on Chang Liver (normal cells), and Human Primary Glioblastoma (U-87) (cancer cells) cell lines for 24, 48 and 72 hours. Percentage of cell viability was evaluated by [2-(4, 5-dimethyl-2-thiazolyl)-3, 5-diphenyl-2H tetrazolium bromide] (MTT) assay. The findings suggested that the extract had a proliferative effect on normal cell growth when tested at lower doses (<60 mg/mL) but inhibited normal cells at concentrations >80 mg/mL in all incubation periods. Meanwhile, it showed the cytotoxic effect on cancer cells only after 48h when treated with all concentrations. As demonstrated, the extract could induce normal cell growth without causing abnormal or cancer cells progression at low concentrations after 48h and 72h.

Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


2005 ◽  
Vol 33 (4) ◽  
pp. 721-723 ◽  
Author(s):  
G. Patsos ◽  
V. Hebbe-Viton ◽  
R. San Martin ◽  
C. Paraskeva ◽  
T. Gallagher ◽  
...  

O-glycosylation is thought to play a significant role in the regulation of cell growth. However, only limited information is available, and few specific and selective inhibitors have been found. We have synthesized a library of O-glycosylation inhibitors based on benzyl-O-N-acetyl-D-galactosamine. These inhibitors were tested with an established series of human colorectal cancer cell lines, which model the adenoma-carcinoma sequence. Cancer cells were incubated with the inhibitors, and examined for cell growth patterns, and cellular and subcellular glycosylation using a range of lectins with confocal microscopy. The specificity of O-glycan inhibition was confirmed for the library, relative to other forms of glycosylation. All inhibitors tested resulted in smaller cell yields. However, a differential effect on O-glycosylation was detected using the lectins showing variation of localization at a subcellular level in the various cell lines. Further differential action of the inhibitor library was observed for apoptosis and on the cell cycle with the cell lines tested. This work demonstrates that O-glycosylation is closely involved in the regulation of cell growth in colorectal cancer cells and that the generation of a library of low-molecular-mass inhibitors offers a valuable means of examining this regulation at the molecular level.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 743
Author(s):  
Oluwaseun Akinyele ◽  
Heather M. Wallace

Breast cancer is a complex heterogeneous disease with multiple underlying causes. The polyamines putrescine, spermidine, and spermine are polycationic molecules essential for cell proliferation. Their biosynthesis is upregulated in breast cancer and they contribute to disease progression. While elevated polyamines are linked to breast cancer cell proliferation, there is little evidence to suggest breast cancer cells of different hormone receptor status are equally dependent on polyamines. In this study, we characterized the responses of two breast cancer cells, ER+ (oestrogen receptor positive) MCF-7 and ER- MDA-MB-231 cell lines, to polyamine modulation and determined the requirement of each polyamine for cancer cell growth. The cells were exposed to DFMO (a polyamine pathway inhibitor) at various concentrations under different conditions, after which several growth parameters were determined. Exposure of both cell lines to DFMO induced differential growth responses, MCF-7 cells showed greater sensitivity to polyamine pathway inhibition at various DFMO concentrations than the MDA-MB-231 cells. Analysis of intracellular DFMO after withdrawal from growth medium showed residual DFMO in the cells with concomitant decreases in polyamine content, ODC protein level, and cell growth. Addition of exogenous polyamines reversed the cell growth inhibition, and this growth recovery appears to be partly dependent on the spermidine content of the cell. Similarly, DFMO exposure inhibits the global translation state of the cells, with spermidine addition reversing the inhibition of translation in the breast cancer cells. Taken together, these data suggest that breast cancer cells are differentially sensitive to the antitumour effects of polyamine depletion, thus, targeting polyamine metabolism might be therapeutically beneficial in breast cancer management based on their subtype.


2018 ◽  
Vol 46 (06) ◽  
pp. 1333-1355 ◽  
Author(s):  
Juyeon Ham ◽  
Seungyeon Lee ◽  
Hyunkyung Lee ◽  
Dawoon Jeong ◽  
Sungbin Park ◽  
...  

Ginsenoside Rg3 is a key metabolite of ginseng and is known to inhibit cancer cell growth. However, the epigenetics of CpG methylation and its regulatory mechanism have yet to be determined. Genome-wide methylation analysis of MCF-7 breast cancer cells treated with Rg3 was performed to identify epigenetically regulated genes and pathways. The effect of Rg3 on apoptosis and cell proliferation was examined by a colony formation assay and a dye-based cell proliferation assay. The association between methylation and gene expression was monitored by RT-PCR and Western blot analysis. Genome-wide methylation analysis identified the “cell morphology”-related pathway as the top network. Rg3 induced late stage apoptosis but inhibited cell proliferation up to 60%. Hypermethylated TRMT1L, PSMC6 and NOX4 were downregulated by Rg3, while hypomethylated ST3GAL4, RNLS and KDM5A were upregulated. In accordance, downregulation of NOX4 by siRNA abrogated the cell growth effect of Rg3, while the effect was opposite for KDM5A. Notably, breast cancer patients with a higher expression of NOX4 and KDM5A showed poor and good prognosis of survival, respectively. In conclusion, Rg3 deregulated tumor-related genes through alteration of the epigenetic methylation level leading to growth inhibition of cancer cells.


2013 ◽  
Vol 781-784 ◽  
pp. 1107-1110
Author(s):  
Xu Jian Luo ◽  
Qi Pin Qin ◽  
Yu Lan Li ◽  
Yan Cheng Liu

A new phenanthroimidazole platinum (II) complex has been synthesized and characterized by IR, NMR, ESI-MS, element analysis. The affinities of the complex toward ct-DNA was determined by circular dichroism absorption (CD), UV-Vis absorption. Results indicate that the complex interact with ct-DNA by classical intercalating mode. The cytotoxicities of the complex was screened against four cancer cell lines and normal cells of HL-7702 in comparison to cisplatin and it showed a higher activity than cisplatin, with IC50 values in the range 8.7417.11 μmol/L. Furthermore, the complex displayed lower cytotoxic activities to HL-7702 (normal cell) compared with the cancer cell lines.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Frederik Roos ◽  
Katherina Binder ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
August Bernd ◽  
...  

The natural compound curcumin exerts antitumor properties in vitro, but its clinical application is limited due to low bioavailability. Light exposure in skin and skin cancer cells has been shown to improve curcumin bioavailability; thus, the object of this investigation was to determine whether light exposure might also enhance curcumin efficacy in bladder cancer cell lines. RT112, UMUC3, and TCCSUP cells were preincubated with low curcumin concentrations (0.1-0.4μg/ml) and then exposed to 1.65 J/cm2visible light for 5 min. Cell growth, cell proliferation, apoptosis, cell cycle progression, and cell cycle regulating proteins along with acetylation of histone H3 and H4 were investigated. Though curcumin alone did not alter cell proliferation or apoptosis, tumor cell growth and proliferation were strongly blocked when curcumin was combined with visible light. Curcumin-light caused the bladder cancer cells to become arrested in different cell phases: G0/G1 for RT112, G2/M for TCCSUP, and G2/M- and S-phase for UMUC3. Proteins of the Cdk-cyclin axis were diminished in RT112 after application of 0.1 and 0.4μg/ml curcumin. Cell cycling proteins were upregulated in TCCSUP and UMUC3 in the presence of 0.1μg/ml curcumin-light but were partially downregulated with 0.4μg/ml curcumin. 0.4μg/ml (but not 0.1μg/ml) curcumin-light also evoked late apoptosis in TCCSUP and UMUC3 cells. H3 and H4 acetylation was found in UMUC3 cells treated with 0.4μg/ml curcumin alone or with 0.1μg/ml curcumin-light, pointing to an epigenetic mechanism. Light exposure enhanced the antitumor potential of curcumin on bladder cancer cells but by different molecular action modes in the different cell lines. Further studies are necessary to evaluate whether intravesical curcumin application, combined with visible light, might become an innovative tool in combating bladder cancer.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1581-1581
Author(s):  
Frederick Lansigan ◽  
Wilson L Davis ◽  
Nancy Kuemmerle ◽  
Leslie E Lupien ◽  
Valeriya Posternak ◽  
...  

Abstract Abstract 1581 Background It is well-recognized that de novo long chain fatty acid (FA) synthesis, driven by the key enzyme fatty acid synthase (FASN), is crucial for the growth and survival of many types of cancer cells. We and others have observed FASN protein expression in diffuse large B-cell lymphoma (DLBCL) tumors. Furthermore, we have shown that higher levels of FASN in DLBCL tumors strongly predicted inferior survival, which was independent from the international prognostic index. We also recently demonstrated that, in addition to FA synthesis, various cancer cells can acquire FA from circulating lipoproteins, using the secreted enzyme lipoprotein lipase (LPL), and that this promotes cell growth. DLBCL, however, has never been examined in this regard. In this study, we investigated the functional significance of both de novo FA synthesis via FASN and exogenous FA uptake via LPL in DLBCL. Methods Levels of FASN and LPL mRNAs in DLBCL cell lines (SUDHL4, SUDHL10, OCI-LY3, OCI-LY19) were studied using reverse transcriptase polymerase chain reaction. We determined FASN and LPL protein expression by flow cytometry using a novel anti-LPL antibody that we developed. DLBCL cell lines were cultured +/− Cerulenin (an inhibitor of FASN), Orlistat (an inhibitor of FASN and LPL), or in lipoprotein-depleted serum +/− supplementation with very low density lipoprotein (VLDL) particles. The MTT assay was used to assess cell proliferation. Results DLBCL cell lines exhibited >10-fold variation in levels of FASN mRNA. Cerulenin and Orlistat each caused dose-dependent inhibition of proliferation of each cell line. The cells were partially rescued by the addition of palmitic acid, the FA product of FASN. Surprisingly, flow cytometry revealed that SUDHL4 and OCI-LY3 cells, which did not secrete LPL or show detectable LPL activity, displayed the enzyme on the cell surface. Moreover, in stark contrast to several other cancer cell lines, DLBCL cells were exquisitely sensitive to withdrawal of lipoproteins from the culture media. Indeed, 75–95% of the cells underwent apoptosis after only 24 hours in lipoprotein-depleted serum. In complete serum, the provision of VLDL particles did not rescue DLBCL cells from FA synthesis inhibition using Cerulenin, suggesting that the serum contains sufficient lipoproteins to saturate the FA uptake system. This prediction was validated in experiments utilizing lipoprotein-depleted serum, in which add-back of VLDL particles completely rescued the cells from Cerulenin-induced demise in a dose-related manner, with full restoration at approximately 100–200mcg/ml of VLDL. Conclusions Our data demonstrate that DLBCL cells employ both de novo FA synthesis via FASN and exogenous FA uptake using LPL to satisfy their strict requirement for FA. Interference with either pathway, using FASN inhibitors or lipoprotein-depleted serum, is cytotoxic indicating that neither alone is sufficient to support proliferation. Further, DLBCL cells show a striking dependency on exogenous FA of dietary origin compared with all other cancer cells we have examined. The observation that the cell lines can be rescued by provision of VLDL particles strongly supports the functional significance of the exogenous FA uptake pathway for DLBCL. Our data thus demonstrate that the extracellular lipase LPL is critical for the growth and survival of DLBCL cells. Surprisingly, the cells deploy LPL to their surface, and we speculate that this promotes efficient FA acquisition from circulating lipoproteins. Recognition that DLBCL relies on both synthesis and uptake of FA will provide guidance for drug development and dietary modifications to effectively target the metabolic requirements of this tumor. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4812-4812
Author(s):  
Joshua E. Allen ◽  
Jo Ishizawa ◽  
Wafik S. El-Deiry ◽  
Michael Andreeff

Abstract ONC201 is a small molecule that is being developed as a novel anticancer drug based on its compelling antitumor activity (Allen et al, Sci Transl Med, 2013). ONC201 possesses a mutation-agnostic efficacy profile that is not impaired by oncogenic mutations that commonly drive disease progression and therapeutic resistance. Given the strong apoptotic potential of ONC201 in a variety of human malignancies, there was a potential concern for normal cell toxicity based on historical experience with potent cytotoxic agents. To establish the safety profile of ONC201, a series of studies was conducted with ONC201 in normal human cells at efficacious and exaggerated doses. With respect to cell viability, dose response relationships between normal human fibroblasts and tumor cell lines revealed a similar inflection point at ~2-5 µM that subsequently saturated in all tested cell lines. Interestingly, saturation of the effects occurred at a much higher level of viability reduction in tumor cells as compared to normal cells. Further investigation revealed that ONC201 does not cause any appreciable levels of cell death in normal cells, which are drastically increased in tumor cells, and that the small effect on normal cell viability is transient and reversible. Studying downstream signaling effects in tumor vs normal cells revealed that ONC201 did not induce DR5 in normal cells under conditions that induced DR5 in tumor cells. This differential DR5 induction is explained by recent mechanistic findings with ONC201 that implicate the ER stress response in its antitumor mechanism, which activates CHOP that positively regulates the human DR5 gene as part of the maladaptive response (Ishizawa J et al, ASH 2014). Thus ONC201 induces a strong apoptotic response in tumor cells at doses that do not affect normal cells, which is reflective of an attractive therapeutic window. The lack of cytotoxicity in normal cells was also confirmed in a panel of normal human bone marrow specimens, including examination of normal progenitor cells. The absence of bone marrow toxicity despite extremely high apoptotic activity in refractory primary human lymphoma samples is a unique and compelling feature of ONC201 compared to available clinical agents in this setting. The genotoxic potential of ONC201 was also assessed in normal and tumor human cell lines. Unlike chemotherapy positive controls, ONC201 did not induce gamma-H2AX, the genotoxic stress marker, in tumor or normal cell lines. The lack of genotoxicity in addition to absence of normal cell toxicity exhibited by ONC201 in preclinical studies enables a range of potential therapeutic settings for application, such as pediatric indications as well as adjuvant and neoadjuvant settings. To enable translation and confirm the safety profile of ONC201, GLP toxicology studies were conducted in Sprague Dawley rats and beagle dogs with single oral doses of ONC201. Dogs received a single dose of 0, 4.2, 42, or 120 mg/kg by oral gavage, which represents a human equivalent of 0, 125 mg, 1.25 g, and 3.57 g, respectively. Rats received 0, 12.5, 125, or 225 mg/kg ONC201 by oral gavage, which represents a human equivalent of 0, 125 mg, 1.25 g, and 2.25 g, respectively. There were no deaths or dose-limiting toxicities. The only findings that were observed in both rats and dogs occurred at the highest doses tested and were mild and reversible: decreased activity (no indications of anemia), decreased food consumption (weight loss only seen in rats), and salivation. The NOAEL was at least 42 mg/kg in dogs and at least 125 mg/kg in rats. Based on regulatory guidance documents, the starting dose in human clinical trials will be a 125 mg oral dose given once every three weeks, which represents a starting efficacious dose based on preclinical tumor xenograft studies in mice. The strong cytotoxic potential of ONC201 in human cancer cells without compromising safety bodes well for its scalability into clinical settings where traditional therapies are too toxic to be implemented. Disclosures Allen: Oncoceutics: Employment, Equity Ownership, Patents & Royalties. El-Deiry:Oncoceutics: Equity Ownership, Patents & Royalties. Andreeff:Oncoceutics: Equity Ownership.


2017 ◽  
Vol 35 (6_suppl) ◽  
pp. 269-269 ◽  
Author(s):  
Chang Wook Jeong ◽  
Ja Hyeon Ku ◽  
Hyeon Hoe Kim ◽  
Cheol Kwak ◽  
Minyong Kang

269 Background: Although statin use has been associated with improved outcomes in prostate cancer, the molecular mechanism of this action is still unclear. Based on previous findings, we aimed to investigate the potential role of NFkB-Lin28B-let7 miRNA signaling pathway in human prostate cancer, particularly, castration-resistant prostate cancer (CRPC) cells, as a molecular mechanism of statin effect. Methods: Various human CRPC cell lines (PC3, DU145, 22Rv1, C42B) were used in this study. Proliferation of prostate cancer cells were measured by MTT assay and colony formation assay. Lin28B and NF-κB expression were controlled by siRNA transfection and the expression on Lin28 and let-7 miRNA were quantitated using RT-PCR and western blotting. Results: Notably, simvastatin treatment on various CRPC cell lines decreased cell viabilities in a dose dependent manner. It also significantly inhibited cell growth in clonogenic assay. In these CRPC cells, LIN28 gene was highly expressed in mRNa and protein levels. Conversely, micro RNA (miRNA) expressions of let7 family were remarkably downregulated in CRPC cells. By simvastatin treatment, mRNA and protein level of Lin28B were decreased, while let7 miRNA expressions were restored, which was the key finding of the current study. Considering NFkB is the upstream molecule of Lin28B, we found that the double treatment of statin and NF-κB inhibitor (CAPE) resulted in decreased cell viability, Lin28B and cyclin D1 expression, synergistically. Of note, let-7 miRNA levels were restored after simvastatin treatment, and further increased their expression levels by CAPE double treatment. In order to confirm this mechanistic clue, we specifically inhibited Lin28B and NF-κB genes, respectively, resulting in increased cell apoptosis signaling in the Lin28b or NF-κB knock down cells by combined treatment with simvastatin. Conclusions: In conclusion, simvastatin inhibited the cell growth of various human CRPC cell lines by controlling NFkB-LIN28B-let7 miRNA signaling pathway, and therefore; concurrent NF-κB inhibition with simvastatin treatment induce the synergistic anti-cancer effects in human CRPC cells.


Sign in / Sign up

Export Citation Format

Share Document