scholarly journals Individual and Synergistic Anti-obesity Effect of Flax Seeds (Linum usitatissimum), Fenugreek Seeds (Trigonella foenum) and Black Seeds (Nigella sativa), in-vivo in Drosophila melanogaster

Author(s):  
Adikeshavan Thilagavathy ◽  
Kavitha G Singh ◽  
Melantha Janet Lobo ◽  
Mayuri Mayuri

Obesity poses a major threat to global health, challenging the prevention of chronic diseases and health across the world. As synthetic medicines have their side effects, lately, there has been an inclination towards herbal remedies. The present study was conducted to evaluate the individual and syngeristic effect of Linum usitatissimum (flax seeds), Trigonella foenum graecum (fenugreek seeds) and Nigella sativa (black seeds) on obesity. In-vivo studies were performed in Drosophila as many tissues and organs related to obesity and its associated disorders are analogous in Drosophila and humans. Obesity was induced by supplementing lipid and high concentration of glucose in the media. The effect of the seeds on obesity was studied by quantitative estimation of lipid content and carbohydrate content in the larvae grown in different media preparations and also by assessment of physical activity of the flies. The study revealed the efficient ability of the seeds to reduce obesity, synergistically as well as individually proving it to be a potential strategy to combat the obesity naturally.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Earnest Oghenesuvwe Erhirhie ◽  
Chidozie Ikegbune ◽  
Anthony Ifeanyi Okeke ◽  
Chukwunonso Chukwudike Onwuzuligbo ◽  
Ngozi Ukamaka Madubuogwu ◽  
...  

AbstractDevelopment of resistance by malaria parasites to conventional antimalarial drugs has rejuvenated the exploration of herbal medicine as alternatives. Also, the increasing rate of the use of herbal antimalarial remedies in combination with conventional antimalarial drugs (both synthetic and semi-synthetic) has inspired researchers to validate their herb-drug interaction effects. This review evaluated the interaction outcomes between herbal antimalarial drugs in combination with conventional antimalarial drugs. With the aid of electronic databases, Pubmed and Google scholar, articles related to this subject were sourced from English peer reviewed scientific journals published from 2003 to 2020. Search terms used include “antimalarial-herbal drugs interaction”, “antimalarial medicinal plant interactions with conventional antimalarial drugs”, “drug-herbal interactions, “antimalarial drugs and medicinal plants”. Synergistic, antagonistic and none effects were reported among 30 studies reviewed. Among 18 in vivo studies on P. berghei and P. yoelii nigerense infected mice model, 14 showed synergism, 3 showed antagonism and 1 involving three plants showed both effects. Among 9 in-vivo studies involving normal animal (non-infected), 2 showed antagonism, 2 showed synergism and 5 showed none-effects. Two (2) studies on human volunteers and one (1) in vitro quantitative study showed that Garcinia kola reduced plasma concentrations of quinine and halofantrine. Generally, majority of herbal antimalarial drugs showed synergistic effects with CAMDs. Vernonia amygdalina was the most studied plant compared to others. Consequently, herbal remedies that produced synergistic effects with conventional antimalarial drugs may be prospects for standardization and development of antimalarial-medicinal plant combination therapy that could curtail malaria resistance to conventional antimalarial therapies.


2021 ◽  
Vol 18 ◽  
Author(s):  
Subheet Kumar Jain ◽  
Neha Panchal ◽  
Amrinder Singh ◽  
Shubham Thakur ◽  
Navid Reza Shahtaghi ◽  
...  

Background: Diclofenac sodium (DS) injection is widely used in the management of acute or chronic pain and inflammatory diseases. It incorporates 20 % w/v Transcutol-P as a solubilizer to make the stable injectable formulation. However, the use of Transcutol-P in high concentration leads to adverse effects such as severe nephrotoxicity, etc. Some advancements resulted in the formulation of an aqueous based injectable but that too used benzyl alcohol reported to be toxic for human use. Objective: To develop an injectable self-micro emulsifying drug delivery system (SMEDDS) as a novel carrier of DS for prompt release with better safety and efficacy. Methods: A solubility study was performed with different surfactants and co-surfactants. The conventional stirring method was employed for the formulation of SMEDDS. Detailed in vitro characterization was done for different quality control parameters. In vivo studies were performed using Wistar rats for pharmacokinetic evaluation, toxicological analysis, and analgesic activity. Results: The optimized formulation exhibited good physical stability, ideal globule size (156±0.4 nm), quick release, better therapeutics, and safety, increase in LD50 (221.9 mg/kg) to that of the commercial counterpart (109.9 mg/kg). Further, pre-treatment with optimized formulation reduced the carrageenan-induced rat paw oedema by 88±1.2 % after 4 h, compared to 77±1.6 % inhibition with commercial DS formulation. Moreover, optimized formulation significantly (p<0.05) inhibited the pain sensation in the acetic-acid induced writhing test in mice compared to its commercial equivalent with a better pharmacokinetic profile. Conclusion: The above findings confirmed that liquid SMEDDS could be a successful carrier for the safe and effective delivery of DS


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1305 ◽  
Author(s):  
Arturo Pujia ◽  
Cristina Russo ◽  
Samantha Maurotti ◽  
Roberta Pujia ◽  
Vincenzo Mollace ◽  
...  

Epidemiological studies show that fruit consumption may modulate bone mineral density. However, data regarding the effect of the Citrus bergamia Risso (Bergamot orange), a citrus fruit containing a high concentration of flavonoids, on bone health are still lacking. In this study, we investigated the effects of Bergamot polyphenols on the Wnt/β-catenin pathway in two distinct bone cell types (Saos-2 and MG63). Findings showed that exposure to 0.01 and 0.1 mg/mL doses upregulate β-catenin expression (p = 0.001), osteoblast differentiation markers (e.g., RUNX2 and COL1A), and downregulate RANKL (p = 0.028), as compared to the control. Our results highlight, for the first time, that Bergamot polyphenols act on bone cells through the β-catenin pathway. In vivo studies are necessary to fully understand Bergamot’s role against bone resorption.


Author(s):  
OLUWASEUN TAOFEEK

The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) responsible for the 2019 coronavirus disease (COVID-19) has caused a global health challenge. The SARS-COV-2 main protease, 3CLpro/Mpro plays a critical role in the viral gene expression and replication and has been a major target for inhibiting viral maturation and enhancing host innate immune responses against COVID-19. In this study, we screened a library of 38 phytochemicals from Nigella sativa (blackseed), Trigonella foenum-graecum (Fenugreek) and Anona muricata (Soursop) potent medicinal plants with reported antiviral properties - in a molecular docking protocol on 3CLpro using Autodock4.0 tool implanted in PyRx followed by docking validation and insilico absorption, distribution, metabolism, excretion, and toxicology (ADMET) evaluations. The docking results were visualized using Accelrys Discovery Studio and Pymol software. Among the 38 ligands screened, 19 showed significant interaction through non-covalent hydrogen bonding, hydrophobic, and electrostatic interactions with binding affinities from -5.3kcal/mol to -8.1kcal/mol indicating significant binding interactions at the active site binding pocket. Another important interaction observed in the study which mostly involve the transfer of charges was pi-interactions such as Pi-Pi interaction, Pi-Alkyl interaction, Pi-Sulfur interaction, Pi- Sigma, and Pi-Pi stacking. The docking results revealed that phytochemicals from T. foenum-graecum showed more 3CLpro inhibitory potential compared to those from N. sativa and A. muricata. Insilico ADMET evaluations for drug-like and lead-like characteristics however demonstrated that only 8 ligands - apigenin, kaempferol, luteolin, dithymoquinone, naringenine, nornuciferine, quercetin and nigellidine were actually drug-like; showed best activities against 3CLpro, and lack hepatotoxicity effects while none was lead-like. Insilico results of this study further suggested that drug repurposing candidates, remdesivir, indinavir,hydroxychloroquine, chloroquine and ritonavir,exhibited various interactions with 3CLpro. Hence, further in vitro and in vivo studies are proposed.


1998 ◽  
Vol 123 (5) ◽  
pp. 875-881 ◽  
Author(s):  
Elazar Fallik ◽  
Douglas D. Archbold ◽  
Thomas R. Hamilton-Kemp ◽  
Ann M. Clements ◽  
Randy W. Collins ◽  
...  

Some plant-derived natural volatile compounds exhibit antifungal properties and may offer an opportunity to control the causes of postharvest spoilage without affecting quality of, or leaving a residue on, fresh produce. The natural wound volatile (E)-2-hexenal has exhibited significant antifungal activity in earlier studies, but effects on spore germination and mycelial growth have not been separated, nor has the inhibitory mode of action been determined. To determine the efficacy of (E)-2-hexenal for control of Botrytis cinerea Pers. ex Fr. spore germination and mycelial growth, and to examine the mode of action, in vitro and in vivo studies were performed. Under in vitro bioassay conditions, spore germination was more sensitive to the compound than was mycelial growth. Vapor from 10.3 μmol of (E)-2-hexenal in a 120-mL petri dish completely inhibited spore germination. However, 85.6 μmol of (E)-2-hexenal was required to completely inhibit mycelial growth. Lower concentrations of the compound (5.4 and 10.3 μmol) significantly stimulated mycelial growth, especially when the volatile was added 2 days following inoculation. Mycelial growth did not occur as long as the vapor-phase concentration was 0.48 μmol·L-1 or greater. Light microscopy analysis indicated that a high concentration of volatile compound dehydrated fungal hyphae and disrupted their cell walls and membranes. Exposure of B. cinerea-inoculated and non-inoculated strawberry (Fragaria ×ananassa Duch.) fruit in 1.1-L low-density polyethylene film-wrapped containers to vapor of (E)-2-hexenal at 85.6 or 856 μmol (10 or 100 mL, respectively) per container for durations of 1, 4, or 7 days during 7 days of storage at 2 °C promoted the incidence of B. cinerea during subsequent shelf storage at 20 to 22 °C. Loss of fruit fresh mass and fruit firmness during storage at 22 °C was increased by (E)-2-hexenal treatment, but fruit total soluble solids, pH, titratable acidity, and color (L, C, and H values) were not affected. Thus, maintenance of a high vapor-phasel level of (E)-hexenal, perhaps >0.48 μmol·L-1, may be necessary to inhibit mycelial growth and avoid enhancing postharvest mold problems, while significantly higher levels may be necessary to completely eliminate the pathogen.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Roghaye Keykhasalar ◽  
Masoud Homayouni Tabrizi ◽  
Pouran Ardalan

Background: Linum usitatissimum Seed Essential Oil (LSEO) as an efficient antimicrobial compound contains various types of phytochemicals, such as lignans and phenols. Objectives: In the current study, we produced LSEO nanoemulsion (LSEO-NE) to study its antioxidant capacity and bactericidal activity against Staphylococcus aureus. Methods: The LSEO-NE was produced using the ultrasonication method and characterized by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM). Then, we measured its antioxidant activity utilizing both ABTS and DPPH tests at four different LSEO-NE concentrations (200, 600, 800, and 1000 µg/mL) compared to glutathione. Finally, we evaluated its bactericidal activity on S. aureus by studying Antibiotic Susceptibility Testing (AST) using LSEO-NE-smeared discs compared to non-smeared and kanamycin discs. Results: The 67.3 nm droplets of LSEO-NE with PDI of 0.452 exhibited strong antioxidant activity, similar to glutathione, in both ABTS (IC50 = 350 µg/mL) and DPPH (IC50 = 235 µg/mL) tests. Moreover, the AST results revealed the significant sensitivity of S. aureus to LSEO-NE-smeared discs when compared to non-smeared and kanamycin discs. Conclusions: According to the results, LSEO-NE can be applied as a safe, natural, and effective antibiotic for bacterial infections caused by S. aureus in most organs, such as the respiratory system and skin. However, further in vivo studies are required to evaluate the LSEO-NE antibacterial efficiency against other pathogenic S. aureus strains.


2021 ◽  
Vol 9 (12) ◽  
pp. 79-90
Author(s):  
Hala Sabry Al-Atbi ◽  
◽  
Asmaa B. Sabti ◽  
Sahar A. Ali ◽  
◽  
...  

Herpes are a group of similar viruses that are responsible for a number of infecting diseases, the most important of which are herpes simplex, herpes zoster and pseudopox. Resistance to traditional antiviral medications is becoming increasingly common, making treatment of such infections even more difficult. For example, the usage of nucleoside analogues like acyclovir to target the DNA-polymerase of the virus on a regular and long-term basis promotes the generation of resistant viruses. As a result, a different treatment is required. Natural products, such as herbal remedies, have been shown to have in vitro and in vivo activity against herpes viruses, and have shown to be a valuable source for new antivirals development and separation. The goal of this review is to highlight the most promising extracts and pure chemicals obtained from plants and marine species that have in vivo anti-herpes simplex virus (HSV-1 and HSV-2) action. Natural products as new anti-HSV medications offer a number of benefits, including fewer side effects, minimal toxicity, and lowered resistance, and a variety ways of deed.


2019 ◽  
Vol 16 (4) ◽  
pp. 408-416 ◽  
Author(s):  
Ahmad M. Eid ◽  
Nidal A. Jaradat ◽  
Nagib A. Elmarzugi ◽  
Raed Alkowni ◽  
Fatima Hussen ◽  
...  

Background: Nigella sativa L. (N. sativa) has been reported to have biological activities such as anti-bacterial, anti-inflammatory, anti-oxidant and anti-fungal activities. Objective: This study aims to develop N. Sativa colloidal-emulgel with the evaluation of its antibacterial, anti-oxidant and in-vivo irritation and sensation testing. Method: Colloidal-emulgel formulations were prepared for N. sativa using different surfactants (Sodium Lauryl Sulphate (S.L.S) and sucrose ester). N. sativa emulsion formulations were prepared using heat inversion technique. After that, the optimum formulation was mixed with Carbopol to produce the colloidal-emulgel. The droplet size, size distribution, and rheological behavior were measured for emulgel formulations. Anti-bacterial and anti-oxidant activities were also reported in the in vivo studies for sensitivity, irritancy and spreadability. Results: It was found that the sucrose ester was able to produce the optimum emulsion formulation with droplets size of less than 1 μm. In the anti-bacterial test for Staphylococcus aureus, it was found that emulgel has an inhibition zone of 2.5 cm in diameter, but the oil alone being 1.3 cm. According to MRSA, the inhibition zone for emulgel was 1.1 cm, but for oil, it was 0.5 cm in diameter. Emulgel does not show any irritation or sensitivity. Also it has a homogeneous appearance with a smooth texture. In addition, it shows fair mechanical properties, and easy spreadability with acceptable bio-adhesion. Conclusion: It is concluded that N. sativa emulgel has been prepared with dermatological and cosmeceutical benefits.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1342 ◽  
Author(s):  
Roberta Perego ◽  
Eva Spada ◽  
Luciana Baggiani ◽  
Piera Anna Martino ◽  
Daniela Proverbio

Background: To characterize the cellular composition (platelets, erythrocytes, and leukocytes) and determine platelet-derived growth factor isoform BB (PDGF-BB) concentration in canine leukocyte- and platelet rich plasma (L-PRP) produced using a commercial semi-automated closed system. Methods: Twenty milliliters of citrated whole blood were obtained from 30 healthy un-sedated canine blood donors and processed using a semi-automated completely closed commercial system (CPUNT 20, Eltek group, Casale Monferrato, Alessandria, Italy) according to the manufacturer’s instructions. Erythrocyte, leukocyte, and platelet counts were determined in both whole blood (WB) and resultant L-PRP. The PDGF-BB concentration was evaluated after bovine thrombin activation of 10 L-PRP samples. Results: This commercial system produced on average 2.3 ± 0.7 mL of L-PRP containing a high concentration of platelets (767,633 ± 291,001 μL, p < 0.001), with a 4.4 fold increase in platelet count, lower concentration of erythrocytes (528,600 ± 222,773 μL, p < 0.001) and similar concentration of leukocytes (8422 ± 6346 μL, p = 0.9918) compared with WB. L-PRP had an average of 3442 ± 2061 pg/mL of PDGF-BB after thrombin activation. Neutrophils, lymphocytes and monocytes average percent content in L-PRP was 14.8 ± 13.2, 71.7 ± 18.5 and 10.7 ± 6.4, respectively. Conclusion: Sterile canine L-PRP prepared using this semi-automated closed system is easy to obtain, produces a significant increase in platelet count compared to WB and contains a detectable concentration of PDGF-BB after activation. Additional in vitro and in vivo studies are needed to assess inflammatory markers concentration and the therapeutic efficacy of this L-PRP in dogs.


2010 ◽  
Vol 48 (2) ◽  
pp. 170-173 ◽  
Author(s):  
Sedigh Bayegan ◽  
Laszlo Majoros ◽  
Gabor Kardos ◽  
Adam Kemény-Beke ◽  
Cecilia Miszti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document