scholarly journals Docking Studies on Ache and Tau Proteins with Marine Bioactive Compound Squalene, A New Approach to Design Anti-Alzheimer’s Drug Targets

Author(s):  
Praveen Kukkarasapalli ◽  
Yellamma Kuna

Natural bioactive compounds of Marine origin have attracted the attention of many biologists and chemists in the world over for the last five decades because it has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological functions. At present, many research findings have provided insight into biological activities of marine natural compounds such as antioxidant- and anti-cholinesterase activity and neuroprotective effects on neurodegenerative diseases, viz. Alzheimer’s and Parkinson’s. The main pathological hallmarks of AD is the formation senile plaques, neurofibrillary tangles and the most incredible physiological and biochemical changes are reduction in acetylcholine (ACh) levels in the hippocampus and cortex of the brain and loss of memory, decaying language etc. Present study is focused on to enhance the acetylcholine levels and subsequently to prevent the formation of Senile Plaques and Neuro Fibrillary Tangles in tau protein responsible for Alzheimer’s disease by using natural bioactive compound Squalene. Computational Biology and Bio-informatics have the potential not only to speed up the drug discovery process but reduces the costs. Further, they also change the way drugs are designed by using Docking Techniques employed to dock a set of marine bioactive compounds within the active site region of 1B41 & 2V17 by using Auto Dock vina. The docking simulation clearly predicted the interaction and highest binding energy docking scores against Squalene, analogues were retrieved from ZINC database i.e. ZINC 0118 (-8.9) and ZINC 0142 (-8.3) for 4B05 & 2V17 enzymes respectively. Further, we Studied visualization aspects in PyMol and also satisfied the biological activity predictions like OSIRIS, Molinspiration and PASS Prediction results by inhibiting the activity of Tau and Acetyl Cholinesterase receptors in AD.

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1541
Author(s):  
Hubert Antolak ◽  
Dominik Piechota ◽  
Aleksandra Kucharska

Kombucha is a low alcoholic beverage with high content of bioactive compounds derived from plant material (tea, juices, herb extracts) and metabolic activity of microorganisms (acetic acid bacteria, lactic acid bacteria and yeasts). Currently, it attracts an increasing number of consumers due to its health-promoting properties. This review focuses on aspects significantly affecting the bioactive compound content and biological activities of Kombucha tea. The literature review shows that the drink is characterized by a high content of bioactive compounds, strong antioxidant, and antimicrobial properties. Factors that substantially affect these activities are the tea type and its brewing parameters, the composition of the SCOBY, as well as the fermentation parameters. On the other hand, Kombucha fermentation is characterized by many unknowns, which result, inter alia, from different methods of tea extraction, diverse, often undefined compositions of microorganisms used in the fermentation, as well as the lack of clearly defined effects of microorganisms on bioactive compounds contained in tea, and therefore the health-promoting properties of the final product. The article indicates the shortcomings in the current research in the field of Kombucha, as well as future perspectives on improving the health-promoting activities of this fermented drink.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Masuma M. Hakim ◽  
Illa C. Patel

Abstract Background From the last few years, the development and discovery of bioactive compounds and their potential properties from marine algae have been enhanced significantly. The coastal area is a huge storehouse for propitious algae. It has been the genuine reality that the consequence of marine algae as a source of different compounds is increasing. Main body Numerous advanced research devices are available for the discovery of synthetic compounds but still many researchers are working on natural bioactive compounds to discover their biological properties, which are useful to society. Marine algae are taking the preponderance of consideration from investigators owing to its phenomenon of biological activity like anti-cancer, anti-viral, cholesterol-reducing, and many more. A variety of compounds are collected from algae with specific purposes as they remain in an extremely ambitious and hard state; this condition is responsible for the synthesis of very particularly effective bioactive compounds. The present article is concentrating on the brown algae of the Gujarat coast, phlorotannins, polyphenol, phytosterol from brown algae, and their various applications. The main importance has been given to the secondary metabolites and various applications of marine brown algae. Conclusion From this review, it can be concluded that the prominent bioactive compounds from brown algae can cure many serious diseases. Besides, the potential biological activities of a special bioactive compound may represent the interest in the industry of pharmaceuticals, cosmeceutical, and functional foods.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1040
Author(s):  
Javier Cifuentes ◽  
Vivian A. Salazar ◽  
Mónica Cuellar ◽  
María Claudia Castellanos ◽  
Jader Rodríguez ◽  
...  

Non-centrifugal cane sugar (NCS) is a traditional sweetener in most sugarcane regions of the world. In Colombia, this product has a socio-economic importance due to the extensive cultivation area and the high consumption rate per capita. NCS traditional processing involves consecutive stages of thermal processing that begin with juice extraction, clarification, evaporation, and finish with syrup crystallization into a solid commercial product, identified as NCS. Sugarcane is known to have a natural content of polyphenols, amino acids, vitamins, minerals, and complex sugars, some of which are reported as antioxidant and antiproliferative agents thought to be responsible for the product’s bioactive profile. There is evidence to suggest that traditional thermal processing to obtain NCS leads to a considerable decrease in the contents of these bioactive compounds, mainly due to uncontrolled process variables such as temperature. Accordingly, the aim of this study was to assess and compare the bioactivity of sugarcane (SC) derivatives produced under controlled thermal conditions versus the traditional method. To achieve this goal, we evaluated the cytotoxic, antioxidant, and neuroprotective effects of varying concentrations of SC derivatives in an in vitro induced Parkinson’s model. Results demonstrate non-cytotoxic activity on the cellular model by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and LDH assays, even at the highest tested concentration of 8 mg/mL, for all SC derivatives. The effect of SC derivatives on the induced oxidative stress model showed a biological reversion and recovering effect of the mitochondrial membrane potential and a halting of the progress into the early apoptosis phase. In conclusion, we demonstrated that the bioactive compounds present in SC derivatives obtained by a process under controlled temperature conditions are largely preserved, and even their biological activities are enhanced compared with SC derivatives obtained by the traditional thermal evaporation of SC-juice.


2020 ◽  
Vol 17 (6) ◽  
pp. 745-756
Author(s):  
Adnan Cetin ◽  
Havva Kurt

Background: The pyrazole structure is an important heterocyclic structure and plays critical roles in agriculture, industrial and medicine. Furthermore, compounds containing pyrazole are known to exhibit various biological properties such as antibacterial, antifungal, anticancer, antiinflammatory, antidepressant, antipyretic, antiviral, anti-tubercular and anti-HIV activities. Because of these properties, pyrazole molecules have become a very popular topic for organic chemists. Methods: A series newly substituted pyrazole molecules were synthesized and characterized. Their antimicrobial activities were investigated by disk diffusion method against some gram positive bacteria and gram negative bacteria. Results: The present results indicated that the some test compounds were active in a broad spectrum against important human pathogenic microorganisms. The substituted pyrazoles including carbazone (7a, b) and thiazolidine (8a, b) showed a wide variety of biological activities. The results showed that synthesized pyrazole, compounds 7b and 8b are highly active and more potent in both biological and molecular docking simulation studies. Conclusion: The synthesized pyrazole molecules showed moderate antibacterial activities against the tested microorganism compared to antibiotic drug. Some test compounds (7b and 8b) might be used as new antibacterial agents.


2020 ◽  
Vol 11 (1) ◽  
pp. 60-67
Author(s):  
Shola Elijah Adeniji ◽  
Abdulwahab Isiaka ◽  
Kalen Ephraim Audu ◽  
Olajumoke Bosede Adalumo

Emergence of multi-drug resistant strains of Mycobacterium tuberculosis to the available drugs has demanded for the development of more potent anti-tubercular agents with efficient pharmacological activities. Time consumed and expenses in discovering and synthesizing new drug targets with improved biological activity have been a major challenge toward the treatment of multi-drug resistance strain M. tuberculosis. To solve the above problem, Quantitative Structure Activity Relationship (QSAR) is a recent approach developed to discover a novel drug with a better biological against M. Tuberculosis. A validated QSAR model developed in this study to predict the biological activities of some anti-tubercular compounds and to design new hypothetical drugs is influenced with the molecular descriptors; AATS7s, VR1-Dzi, VR1-Dzs, SpMin7-Bhe and RDF110i. The internal validation test for the derived model was found to have correlation coefficient (R2) of 0.8875, adjusted correlation coefficient (R2adj) value of 0.8234 and leave one out cross validation coefficient (Qcv2) value of 0.8012 while the external validation test was found to have (R2test) of 0.7961 and Y-randomization Coefficient (cRp2) of 0.6832. Molecular docking shows that ligand 13 of 2,4-disubstituted quinoline derivatives have promising higher binding score of -18.8 kcal/mol compared to the recommended drugs; isoniazid -14.6 kcal/mol. The proposed QSAR model and molecular docking studies will provides valuable approach for the modification of the lead compound, designing and synthesis more potent anti-tubercular agents.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6995
Author(s):  
Rosemary Anibogwu ◽  
Karl De Jesus ◽  
Samjhana Pradhan ◽  
Srinath Pashikanti ◽  
Sameena Mateen ◽  
...  

Diverse medicinal plants such as those from the genus Artemisia have been employed globally for centuries by individuals belonging to different cultures. Universally, Artemisia species have been used to remedy various maladies that range from simple fevers to malaria. A survey conducted by the World Health Organization (WHO) demonstrated that 80% of the global population is highly reliant on herbal medicine for their primary healthcare. WHO recommends artemisinin-based combination therapies (ACT) for the treatment of global diseases such as malaria. Artemisinin is a bioactive compound derived from Artemisia annua leaves. It is a sesquiterpene endoperoxide with potent antimalarial properties. This review strives to instill natural products to chemists and others in diverse fields with a heterogeneous set of knowledge compiled from multifaceted researchers and organizations in literature. In particular, the various Artemisia species and effective extraction, isolation, and characterization methodologies are discussed in detail. An in-depth investigation into the literature reveals that divergent species of Artemisia exhibit a vast array of biological activities such as antimalarial, antitumor, and anti-inflammatory activities. There is substantial potential for bioactive compounds from Artemisia to provide significant relief from differing human ailments, but more meticulous research in this field is needed.


2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


2019 ◽  
Vol 25 (7) ◽  
pp. 750-773 ◽  
Author(s):  
Pabitra Narayan Samanta ◽  
Supratik Kar ◽  
Jerzy Leszczynski

The rapid advancement of computer architectures and development of mathematical algorithms offer a unique opportunity to leverage the simulation of macromolecular systems at physiologically relevant timescales. Herein, we discuss the impact of diverse structure-based and ligand-based molecular modeling techniques in designing potent and selective antagonists against each adenosine receptor (AR) subtype that constitutes multitude of drug targets. The efficiency and robustness of high-throughput empirical scoring function-based approaches for hit discovery and lead optimization in the AR family are assessed with the help of illustrative examples that have led to nanomolar to sub-micromolar inhibition activities. Recent progress in computer-aided drug discovery through homology modeling, quantitative structure-activity relation, pharmacophore models, and molecular docking coupled with more accurate free energy calculation methods are reported and critically analyzed within the framework of structure-based virtual screening of AR antagonists. Later, the potency and applicability of integrated molecular dynamics (MD) methods are addressed in the context of diligent inspection of intricated AR-antagonist binding processes. MD simulations are exposed to be competent for studying the role of the membrane as well as the receptor flexibility toward the precise evaluation of the biological activities of antagonistbound AR complexes such as ligand binding modes, inhibition affinity, and associated thermodynamic and kinetic parameters.


2020 ◽  
Vol 20 (23) ◽  
pp. 2106-2117
Author(s):  
Martin Krátký ◽  
Šárka Štěpánková ◽  
Michaela Brablíková ◽  
Katarína Svrčková ◽  
Markéta Švarcová ◽  
...  

Background: Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias’ treatment. Objective: Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors. Methods: Hydrazide-hydrazones were synthesized from 4-substituted benzohydrazides and 2-/4- hydroxy-3,5-diiodobenzaldehydes. The compounds were investigated in vitro for their potency to inhibit AChE from electric eel and BuChE from equine serum using Ellman’s method. We calculated also physicochemical and structural parameters for CNS delivery. Results: The derivatives exhibited a moderate dual inhibition with IC50 values ranging from 15.1-140.5 and 35.5 to 170.5 μmol.L-1 for AChE and BuChE, respectively. Generally, the compounds produced a balanced or more potent inhibition of AChE. N'-[(E)-(4-Hydroxy-3,5-diiodophenyl)methylidene]-4- nitrobenzohydrazide 2k and 4-fluoro-N'-(2-hydroxy-3,5-diiodobenzyl)benzohydrazide 3a were the most potent inhibitors of AChE and BuChE, respectively. Structure-activity relationships were established, and molecular docking studies confirmed interaction with enzymes. Conclusion: Many novel hydrazide-hydrazones showed lower IC50 values than rivastigmine against AChE and some of them were comparable for BuChE to this drug used for the treatment of dementia. They interact with cholinesterases via non-covalent binding into the active site. Based on the BOILEDEgg approach, the majority of the derivatives met the criteria for blood-brain-barrier permeability.


2020 ◽  
Vol 20 (29) ◽  
pp. 2681-2691
Author(s):  
Athina Geronikaki ◽  
Victor Kartsev ◽  
Phaedra Eleftheriou ◽  
Anthi Petrou ◽  
Jasmina Glamočlija ◽  
...  

Background: Although a great number of the targets of antimicrobial therapy have been achieved, it remains among the first fields of pharmaceutical research, mainly because of the development of resistant strains. Docking analysis may be an important tool in the research for the development of more effective agents against specific drug targets or multi-target agents 1-3. Methods: In the present study, based on docking analysis, ten tetrahydrothiazolo[2,3-a]isoindole derivatives were chosen for the evaluation of the antimicrobial activity. Results: All compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species being, in some cases, more potent than ampicillin and streptomycin against all species. The most sensitive bacteria appeared to be S. aureus and En. Cloacae, while M. flavus, E. coli and P. aeruginosa were the most resistant ones. The compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited good antifungal activity better than reference drugs bifonazole (1.4 – 41 folds) and ketoconazole (1.1 – 406 folds) against all fungal species. In order to elucidate the mechanism of action, docking studies on different antimicrobial targets were performed. Conclusion: According to docking analysis, the antifungal activity can be explained by the inhibition of the CYP51 enzyme for most compounds with a better correlation of the results obtained for the P.v.c. strain (linear regression between estimated binding Energy and log(1/MIC) with R 2 =0.867 and p=0.000091 or R 2 = 0.924, p= 0.000036, when compound 3 is excluded.


Sign in / Sign up

Export Citation Format

Share Document