scholarly journals Multidrug Resistance and Serotype Distribution of Salmonella Enterica Isolated from Homemade Recipe Fermented Ground Pork (Nham) in Northeastern Thailand

2022 ◽  
Vol 19 (1) ◽  
pp. 1720
Author(s):  
Thi-Hoang-Nga Vo ◽  
Kochakorn Direksin ◽  
Nawarat Rattanadilok-Na-Phuket ◽  
Thitima Nutravong ◽  
Anusak Kerdsin

Salmonellosis is caused by a thousand serotypes of Salmonella enterica. The sour taste inherent to Nham leads people believe that this fermented ground pork dish is safe from pathogenic microorganisms. The aim of this study was to evaluate the prevalence, serotype, drug susceptibility, and antimicrobial resistance (AMR) genes of Salmonella spp. in homemade recipes of Nham. There were 52 samples from different Nham makers in 3 northeastern provinces of Thailand collected between August and November 2019. Further, 30 Salmonella isolates (57.7 %) and 14 different serovars were identified: S. Rissen (23.3 %) was the most prevalent, followed by S. Typhimurium (16.7 %), S. Give and S. Virchow (10 % each), and S. Agona and S. Kouka (6.7 % each). All isolates carried AMR genes but 7 (23.3 %) were antibiotic susceptible and 23 (76.7 %) borne a resistance phenotype. The Salmonella isolates were resistant to tetracycline (63 %), sulfamethoxazole/trimethoprim (36.7 %), streptomycin (33.3 %), nalidixic acid (30 %), cefotaxime (16.7 %), and enrofloxacin (3.3 %). Among the 23 AMR genes in our analysis, there were gyrB (100 %), tetA (93.3 %), aadA (93.3 %), sul1, sul2, sul3 (23.3 - 33.3 %), dfrA12 (16.7 %), qnrS, (6.7 %), and mcr6 (6.7 %). Two strains had the mcr6 gene but were susceptible to colistin. Our findings suggest that naturally occurring lactic acid bacteria in the Nham products are insufficient to inhibit Salmonella contamination of this pork-based food. HIGHLIGHTS Highly presence of Salmonella in fermented ground pork (Nham) All identified Salmonella isolates in the Nham have AMR genes A few Salmonella isolates carry AMR genes but are antibiotic susceptible Two Salmonella isolates contain the mcr6 gene but are susceptible to colistin

2019 ◽  
Vol 34 (2) ◽  
pp. 83-90
Author(s):  
Farzana Ehetasum Hossain ◽  
Sharmin Akther ◽  
Atqiya Fahmida Tajalli

A significant limitation to flourish poultry industry in Bangladesh is the emergence of multidrug resistance pathogenic bacteria like Salmonella spp. due to uncontrolled use of antibiotics for disease treatment. An alternative to antibiotics could be the application of probiotics. About 120 cloacal-swabs from poultry birds were investigated, seventy two (72) isolates of Salmonella spp. and twenty two (22) isolates of lactic acid bacteria (out of 50)were identified respectively by cultural, morphological and biochemical tests presumptively. Antibiotic sensitivity test of Salmonella spp. was performed, followed by Kirby-Bauer disc-diffusion assay with six antibiotic groups. All those isolates of Salmonella spp. were found to be highly resistant to â-lactam, cephalosporin, tetracycline and macrolide, highly sensitive to carbapenem and moderately sensitive to aminoglycosides. Then Salmonella spp. were used as a target for the prospective probiotic bacteria which were screened based on antimicrobial activity against those multidrug resistance Salmonella spp. In antagonism assay such as disc diffusion and one-streak method, it was revealed that five lactic acid bacteria showed antimicrobial activity against Salmonella spp. Further, lactic acid bacteria were characterized based on their tolerance ability to pH and NaCl, antibiotic susceptibility test. The tolerance range of Lactic acid bacteria was about pH (3.5-9.5), NaCl (4-8) % and also resistant to antibiotics groups like B lactam, aminoglycosides, and quinolone. Then 16S rDNA gene sequence analysis was performed for molecular identification of potential probiotic bacteria. One representative isolate was identified as phylogenetically closed relative to Pediococcus acidilactici. This study was able to demonstrate that Pediococcus acidilactici as anindigenous probiotic candidate to inhibit the growth of isolated multidrug resistant Salmonella spp. in poultry. The potent probiotic candidate Pediococcus sp. could be used to counter bacterial diseases in poultry, thereby it could ensure food safety in the poultry industries of Bangladesh. Bangladesh J Microbiol, Volume 34 Number 2 December 2017, pp 83-90


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 568
Author(s):  
Elisabetta Razzuoli ◽  
Valeria Listorti ◽  
Isabella Martini ◽  
Laura Migone ◽  
Lucia Decastelli ◽  
...  

Salmonella spp. is an important zoonotic agent. Wild boars might host this pathogen in the intestinal tract and might represent a risk for Salmonella spp. transmission to humans. Wild boars are widely spread in Liguria, due to the environmental characteristics of the region. The aim of the study was the isolation, typing, and investigation of antimicrobial susceptibility of the isolated strains of Salmonella spp. During the 2013–2017 hunting seasons, 4335 livers of wild boars were collected and analyzed for the presence of Salmonella spp. A total of 260 strains of Salmonella spp. were isolated and characterized, with a prevalence of 6%. The isolated strains belonged to all six Salmonella enterica subspecies. Most of them were identified as Salmonella enterica subs. enterica of which 31 different serotypes were identified. The dominating serotype identified was S. Enteritidis. The antimicrobial resistance profiles of the isolated strains were analyzed against sixteen molecules. Of the isolated strains, 94.6% were resistant to at least one of the tested antimicrobials. This study showed the circulation of resistant Salmonella spp. strains in the wild boar population living in this area of Italy, underling the potential risk for these animals to disseminate this pathogen and its antimicrobial resistances.


2021 ◽  
Vol 9 (5) ◽  
pp. 952
Author(s):  
Nure Alam Siddiky ◽  
Md Samun Sarker ◽  
Md. Shahidur Rahman Khan ◽  
Ruhena Begum ◽  
Md. Ehsanul Kabir ◽  
...  

Virulent and multi drug resistant (MDR) Salmonellaenterica is a foremost cause of foodborne diseases and had serious public health concern globally. The present study was undertaken to identify the pathogenicity and antimicrobial resistance (AMR) profiles of Salmonellaenterica serovars recovered from chicken at wet markets in Dhaka, Bangladesh. A total of 870 cecal contents of broiler, sonali, and native chickens were collected from 29 wet markets. The overall prevalence of S. Typhimurium, S. Enteritidis, and untyped Salmonella spp., were found to be 3.67%, 0.57%, and 1.95% respectively. All isolates were screened by polymerase chain reaction (PCR) for eight virulence genes, namely invA, agfA, IpfA, hilA, sivH, sefA, sopE, and spvC. S. Enteritidis isolates carried all virulence genes whilst S. Typhimurium isolates carried six virulence genes except sefA and spvC. A diverse phenotypic and genotypic AMR pattern was found. Harmonic descending trends of resistance patterns were observed among the broiler, sonali, and native chickens. Interestingly, virulent and MDR Salmonella enterica serovars were found in native chicken, although antimicrobials were not used in their production cycle. The research findings anticipate that virulent and MDR Salmonella enterica are roaming in the wet markets which can easily anchor to the vendor, consumers, and in the food chain.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 654
Author(s):  
Adriana Trotta ◽  
Laura Del Sambro ◽  
Michela Galgano ◽  
Stefano Ciccarelli ◽  
Erika Ottone ◽  
...  

Background: S. enterica subsp. houtenae has been rarely documented, and very limited genomic information is available. This report describes a rare case of primary extraintestinal salmonellosis in a young roe deer, associated with Salmonella enterica subsp. houtenae. Methods: A traditional cultural-based analysis was carried out from the contents of a neck abscess; biochemical identification and PCR assay were performed to isolate and identify the pathogen. Through whole-genome sequencing (WGS), multilocus sequence typing (MLST), core genome MLST (cgMLST), and the Salmonella pathogenicity islands (SPIs) survey, resistome and virulome genes were investigated to gain insight into the virulence and antimicrobial resistance of S. houtenae. Results: Biochemical identification and PCR confirmed the presence of Salmonella spp. in the swelling. The WGS analysis identified Salmonella enterica subspecies houtenae serovar 43:z4,z23:- and ST 958. The virulence study predicted a multidrug resistance pattern with resistance shown against aminoglycosides, tetracycline, beta-lactamase, fluoroquinolones, fosfomycin, nitroimidazole, aminocoumarin, and peptide. Fifty-three antibiotic-resistant genes were identified. No plasmids were detected. Conclusion: This study demonstrates the importance of continuous surveillance of pathogenic salmonellae. Biomolecular analyses combined with epidemiological data can provide important information about poorly described Salmonella strains and can help to improve animal welfare.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 206
Author(s):  
Md Bashir Uddin ◽  
S.M. Bayejed Hossain ◽  
Mahmudul Hasan ◽  
Mohammad Nurul Alam ◽  
Mita Debnath ◽  
...  

Colistin (polymyxin E) is widely used in animal and human medicine and is increasingly used as one of the last-resort antibiotics against Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant Gram-negative bacteria, resistance to this antibiotic ought to be monitored. The study was undertaken to elucidate the molecular mechanisms, genetic relationships and phenotype correlations of colistin-resistant isolates. Here, we report the detection of the mcr-1 gene in chicken-associated Salmonella isolates in Bangladesh and its in-silico functional analysis. Out of 100 samples, 82 Salmonella spp. were isolated from chicken specimens (liver, intestine). Phenotypic disc diffusion and minimum inhibitory concentration (MIC) assay using different antimicrobial agents were performed. Salmonella isolates were characterized using PCR methods targeting genus-specific invA and mcr-1 genes with validation for the functional analysis. The majority of the tested Salmonella isolates were found resistant to colistin (92.68%), ciprofloxacin (73.17%), tigecycline (62.20%) and trimethoprim/sulfamethoxazole (60.98%). When screened using PCR, five out of ten Salmonella isolates were found to carry the mcr-1 gene. One isolate was confirmed for Salmonella enterica subsp. enterica serovar Enteritidis, and other four isolates were confirmed for Salmonella enterica subsp. enterica serovar Typhimurium. Sequencing and phylogenetic analysis revealed a divergent evolutionary relationship between the catalytic domain of Neisseria meningitidis lipooligosaccharide phosphoethanolamine transferase A (LptA) and MCR proteins, rendering them resistant to colistin. Three-dimensional homology structural analysis of MCR-1 proteins and molecular docking interactions suggested that MCR-1 and LptA share a similar substrate binding cavity, which could be validated for the functional analysis. The comprehensive molecular and in-silico analyses of the colistin resistance mcr-1 gene of Salmonella spp. of chicken origin in the present study highlight the importance of continued monitoring and surveillance for antimicrobial resistance among pathogens in food chain animals.


2009 ◽  
Vol 27 (No. 6) ◽  
pp. 454-462 ◽  
Author(s):  
M.A. Martínez-Téllez ◽  
F.J. Rodríguez-Leyva ◽  
I.E. Espinoza-Medina ◽  
I. Vargas-Arispuro ◽  
A.A. Gardea ◽  
...  

The absence of good agricultural and manufacturing practices in the production and postharvest handling of fresh produce, such as green asparagus or green onions increase the contamination risk by biological hazards like Salmonella. The objective of this work was to investigate the efficacy of chlorine (200 and 250 ppm), hydrogen peroxide (1.5% and 2%), and lactic acid (1.5% and 2%) sanitisers during different exposure times (40, 60, and 90 s) on the reduction of <i>Salmonella enterica</i> subspecie <i>enterica</i> serovar Typhimurium in inoculated fresh green asparagus and green onions. Washing with clean water only reduced < 1 log10 CFU/g in both vegetables. The most effective sanitiser evaluated for fresh green asparagus and green onions disinfection appeared to be 2% lactic acid reducing <i>Salmonella</i> growth close to 3 log<sub>10</sub> CFU/g. Hydrogen peroxide was the least effective agent for <i>Salmonella</i> Typhimurium reduction. No effect was observed of the exposure time of inoculated product to sanitiser up to 90 seconds. These results confirm that lactic acid could be used as an alternative for fresh green asparagus and green onions sanitation.


2016 ◽  
Vol 79 (7) ◽  
pp. 1252-1258 ◽  
Author(s):  
E. GKANA ◽  
A. LIANOU ◽  
G.-J. E. NYCHAS

ABSTRACT It is well established that a high percentage of foodborne illness is caused by failure of consumers to prepare food in a hygienic manner. Indeed, a common practice in households is to use the same kitchen equipment for both raw meat and fresh produce. Such a practice may lead to cross-contamination of fruits and vegetables, which are mainly consumed without further processing, with pathogenic microorganisms originating from raw meat. The present study was performed to examine the transfer of the pathogenic bacterium Salmonella enterica serovar Typhimurium from inoculated beef fillets to tomatoes via contact with high-density polyethylene (PE), stainless steel (SS), and wooden (WD) surfaces and through cutting with SS knives. Furthermore, the following decontamination procedures were applied: (i) rinsing with tap water, (ii) scrubbing with tap water and liquid dish detergent, and (iii) using a commercial antibacterial spray. When surfaces and knives that came into contact with contaminated beef fillets were not cleaned prior to handling tomatoes, the lowest level of pathogen transfer to tomatoes was observed through PE surfaces. All of the decontamination procedures applied were more effective on knives than on surfaces, while among the surface materials tested, WD surfaces were the most difficult to decontaminate, followed by PE and SS surfaces. Mechanical cleaning with tap water and detergent was more efficient in decontaminating WD surfaces than using commercial disinfectant spray, followed by rinsing only with water. Specifically, reductions of 2.07 and 1.09 log CFU/cm2 were achieved by washing the WD surfaces with water and detergent and spraying the surfaces with an antibacterial product, respectively. Although the pathogen's populations on SS and PE surfaces, as well as on tomatoes, after both aforementioned treatments were under the detection limit, the surfaces were all positive after enrichment, and thus, the potential risk of cross-contamination cannot be overlooked. As demonstrated by the results of this study, washing or disinfection of kitchen equipment may not be sufficient to avoid cross-contamination of ready-to-eat foods with foodborne pathogens, depending on the decontamination treatment applied and the material of the surfaces treated. Therefore, separate cutting boards and knives should be used for processing raw meat and preparing ready-to-eat foods in order to enhance food safety.


2006 ◽  
Vol 51 (2) ◽  
pp. 535-542 ◽  
Author(s):  
Sheng Chen ◽  
Shenghui Cui ◽  
Patrick F. McDermott ◽  
Shaohua Zhao ◽  
David G. White ◽  
...  

ABSTRACT The mechanisms involved in fluoroquinolone resistance in Salmonella enterica include target alterations and overexpression of efflux pumps. The present study evaluated the role of known and putative multidrug resistance efflux pumps and mutations in topoisomerase genes among laboratory-selected and naturally occurring fluoroquinolone-resistant Salmonella enterica serovar Typhimurium strains. Strains with ciprofloxacin MICs of 0.25, 4, 32, and 256 μg/ml were derived in vitro using serovar Typhimurium S21. These mutants also showed decreased susceptibility or resistance to many nonfluoroquinolone antimicrobials, including tetracycline, chloramphenicol, and several β-lactams. The expression of efflux pump genes acrA, acrB, acrE, acrF, emrB, emrD, and mdlB were substantially increased (≥2-fold) among the fluoroquinolone-resistant mutants. Increased expression was also observed, but to a lesser extent, with three other putative efflux pumps: mdtB (yegN), mdtC (yegO), and emrA among mutants with ciprofloxacin MICs of ≥32 μg/ml. Deletion of acrAB or tolC in S21 and its fluoroquinolone-resistant mutants resulted in increased susceptibility to fluoroquinolones and other tested antimicrobials. In naturally occurring fluoroquinolone-resistant serovar Typhimurium strains, deletion of acrAB or tolC increased fluoroquinolone susceptibility 4-fold, whereas replacement of gyrA double mutations (S83F D87N) with wild-type gyrA increased susceptibility >500-fold. These results indicate that a combination of topoisomerase gene mutations, as well as enhanced antimicrobial efflux, plays a critical role in the development of fluoroquinolone resistance in both laboratory-derived and naturally occurring quinolone-resistant serovar Typhimurium strains.


Sign in / Sign up

Export Citation Format

Share Document