scholarly journals Ultrasonographic Evaluation of Fetal Face by 3D/4D Sonography

Author(s):  
Guillermo Azumendi ◽  
Iva Lausin ◽  
Ritsuko K Pooh ◽  
Gaston Grant

Abstract The evaluation of the fetal face is an important part of every ultrasound examination since detailed facial examination can provide many information alerting the examiner about possible associated anomalies. Face and the brain have the same embryonic origin. By using 2 and 3D ultrasound techniques, it is possible to obtain clear images of different fetal face defects. Incorporation of the 4D ultrasonography made it possible to examine fetal behavior including fetal face movements. In that way using the ultrasound in the examination of the fetal face provides many new information not just about the morphology but also about neurological development and function of the fetal face.

SLEEP ◽  
2021 ◽  
Author(s):  
Marissa Sgro ◽  
Zoe N Kodila ◽  
Rhys D Brady ◽  
Amy C Reichelt ◽  
Richelle Mychaisuk ◽  
...  

Abstract The microbes that colonize the small and large intestines, known as the gut microbiome, play an integral role in optimal brain development and function. The gut microbiome is a vital component of the bi-directional communication pathway between the brain, immune system, and gut, also known as the brain-gut-immune axis. To date there has been minimal investigation into the implications of improper development of the gut microbiome and the brain-gut-immune axis on the sleep-wake cycle, particularly during sensitive periods of physical and neurological development, such as childhood, adolescence, and senescence. Therefore, this review will explore the current literature surrounding the overlapping developmental periods of the gut microbiome, brain, and immune system from birth through to senescence, while highlighting how the brain-gut-immune axis affects maturation and organisation of the sleep-wake cycle. We also examine how dysfunction to either the microbiome or the sleep-wake cycle negatively affects the bidirectional relationship between the brain and gut, and subsequently the overall health and functionality of this complex system. Additionally, this review integrates therapeutic studies to demonstrate when dietary manipulations, such as supplementation with probiotics and prebiotics, can modulate the gut microbiome to enhance health of the brain-gut-immune axis and optimize our sleep-wake cycle.


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Hand ◽  
2021 ◽  
pp. 155894472199246
Author(s):  
David D. Rivedal ◽  
Meng Guo ◽  
James Sanger ◽  
Aaron Morgan

Targeted muscle reinnervation (TMR) has been shown to improve phantom and neuropathic pain in both the acute and chronic amputee population. Through rerouting of major peripheral nerves into a newly denervated muscle, TMR harnesses the plasticity of the brain, helping to revert the sensory cortex back toward the preinsult state, effectively reducing pain. We highlight a unique case of an above-elbow amputee for sarcoma who was initially treated with successful transhumeral TMR. Following inadvertent nerve biopsy of a TMR coaptation site, his pain returned, and he was unable to don his prosthetic. Revision of his TMR to a more proximal level was performed, providing improved pain and function of the amputated arm. This is the first report to highlight the concept of secondary neuroplasticity and successful proximal TMR revision in the setting of multiple insults to the same extremity.


Author(s):  
Enrico Castroflorio ◽  
Joery den Hoed ◽  
Daria Svistunova ◽  
Mattéa J. Finelli ◽  
Alberto Cebrian-Serrano ◽  
...  

Abstract Members of the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) protein family are associated with multiple neurodevelopmental disorders, although their exact roles in disease remain unclear. For example, nuclear receptor coactivator 7 (NCOA7) has been associated with autism, although almost nothing is known regarding the mode-of-action of this TLDc protein in the nervous system. Here we investigated the molecular function of NCOA7 in neurons and generated a novel mouse model to determine the consequences of deleting this locus in vivo. We show that NCOA7 interacts with the cytoplasmic domain of the vacuolar (V)-ATPase in the brain and demonstrate that this protein is required for normal assembly and activity of this critical proton pump. Neurons lacking Ncoa7 exhibit altered development alongside defective lysosomal formation and function; accordingly, Ncoa7 deletion animals exhibited abnormal neuronal patterning defects and a reduced expression of lysosomal markers. Furthermore, behavioural assessment revealed anxiety and social defects in mice lacking Ncoa7. In summary, we demonstrate that NCOA7 is an important V-ATPase regulatory protein in the brain, modulating lysosomal function, neuronal connectivity and behaviour; thus our study reveals a molecular mechanism controlling endolysosomal homeostasis that is essential for neurodevelopment. Graphic abstract


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Katherine M Ranard ◽  
Matthew J Kuchan ◽  
John W Erdman

ABSTRACT Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)–null (Ttpa−/−) mouse model. Ttpa+/− dams can be used to produce Ttpa−/− and Ttpa+/+mice for these studies. However, the α-T content in Ttpa+/− dams’ diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa−/− mice for neurological studies.


2006 ◽  
Vol 34 (5) ◽  
pp. 863-867 ◽  
Author(s):  
S. Mizielinska ◽  
S. Greenwood ◽  
C.N. Connolly

Maintaining the correct balance in neuronal activation is of paramount importance to normal brain function. Imbalances due to changes in excitation or inhibition can lead to a variety of disorders ranging from the clinically extreme (e.g. epilepsy) to the more subtle (e.g. anxiety). In the brain, the most common inhibitory synapses are regulated by GABAA (γ-aminobutyric acid type A) receptors, a role commensurate with their importance as therapeutic targets. Remarkably, we still know relatively little about GABAA receptor biogenesis. Receptors are constructed as pentameric ion channels, with α and β subunits being the minimal requirement, and the incorporation of a γ subunit being necessary for benzodiazepine modulation and synaptic targeting. Insights have been provided by the discovery of several specific assembly signals within different GABAA receptor subunits. Moreover, a number of recent studies on GABAA receptor mutations associated with epilepsy have further enhanced our understanding of GABAA receptor biogenesis, structure and function.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 957
Author(s):  
Brad T. Casali ◽  
Erin G. Reed-Geaghan

Microglia are the resident immune cells of the brain, deriving from yolk sac progenitors that populate the brain parenchyma during development. During development and homeostasis, microglia play critical roles in synaptogenesis and synaptic plasticity, in addition to their primary role as immune sentinels. In aging and neurodegenerative diseases generally, and Alzheimer’s disease (AD) specifically, microglial function is altered in ways that significantly diverge from their homeostatic state, inducing a more detrimental inflammatory environment. In this review, we discuss the receptors, signaling, regulation and gene expression patterns of microglia that mediate their phenotype and function contributing to the inflammatory milieu of the AD brain, as well as strategies that target microglia to ameliorate the onset, progression and symptoms of AD.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


1993 ◽  
Vol 4 (3) ◽  
pp. 227-237 ◽  
Author(s):  
Donald G. Stein ◽  
Marylou M. Glasier ◽  
Stuart W. Hoffman

It is only within the last ten years that research on treatment for central nervous system (CNS) recovery after injury has become more focused on the complexities involved in promoting recovery from brain injury when the CNS is viewed as an integrated and dynamic system. There have been major advances in research in recovery over the last decade, including new information on the mechanics and genetics of metabolism and chemical activity, the definition of excitotoxic effects and the discovery that the brain itself secretes complex proteins, peptides and hormones which are capable of directly stimulating the repair of damaged neurons or blocking some of the degenerative processes caused by the injury cascade. Many of these agents, plus other nontoxic naturally occurring substances, are being tested as treatment for brain injury. Further work is needed to determine appropriate combinations of treatments and optimum times of administration with respect to the time course of the CNS disorder. In order to understand the mechanisms that mediate traumatic brain injury and repair, there must be a merging of findings from neurochemical studies with data from intensive behavioral testing.


Sign in / Sign up

Export Citation Format

Share Document