scholarly journals Potential Treatment of Psoriasis with Oral Spironolactone as TNF-Alpha Inhibitor – A Future Prospective Review

2021 ◽  
Vol 23 (08) ◽  
pp. 411-420
Author(s):  
Dr. Sanjana Mehta ◽  
◽  
Dr. Parminder Nain ◽  
Dr. Jaspreet Sidana ◽  
◽  
...  

Psoriasis is a chronic dermatological condition that cause scaly red patches on the different parts of body. It always tends in cycles of months wherein winter aggravation is most common then it subsides for a while then again relapse or remission. The exact identity of the factors causing psoriasis is not established but the fact that T cell activates the release of proinflammatory cytokines such as TNF-α, interferon-γ and IL-2 has been identified. Cytokine, TNF- α plays a key role in keratinocyte proliferation and other vascular changes in psoriasis. TNF-α protein levels has been found on higher side in psoriasis lesions, intraepidermal Langerhans cells and dermal dendrocytes. The available treatment options for suppressing TNF-α are given only by IV/SC route like adalimumab, infliximab and etanercept also costlier and give only symptomatic relief for a shorter period of time. Hence, we need a pharmacologically active, therapeutically safe and cost-effective agent for long term use. Against all the available data, Spironolactone an aldosterone antagonist has been found to fulfill all the necessary conditions to be used as TNF- α antagonist, a noticeable suppressive effect on TNF- α receptor along with several pro-inflammatory cytokines. Such findings encouraged beginning of clinical studies of spironolactone as TNF- 𝛼 antagonist in patients with psoriasis.


2004 ◽  
Vol 207 (S 2) ◽  
Author(s):  
B Feldhaus ◽  
I Dietzel-Meyer ◽  
R Heumann ◽  
R Berger
Keyword(s):  


Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lori W. E. van der Schoor ◽  
Henkjan J. Verkade ◽  
Anna Bertolini ◽  
Sanne de Wit ◽  
Elvira Mennillo ◽  
...  

AbstractNeonatal hyperbilirubinemia or jaundice is associated with kernicterus, resulting in permanent neurological damage or even death. Conventional phototherapy does not prevent hyperbilirubinemia or eliminate the need for exchange transfusion. Here we investigated the potential of therapeutic bile acids ursodeoxycholic acid (UDCA) and obeticholic acid (OCA, 6-α-ethyl-CDCA), a farnesoid-X-receptor (FXR) agonist, as preventive treatment options for neonatal hyperbilirubinemia using the hUGT1*1 humanized mice and Ugt1a-deficient Gunn rats. Treatment of hUGT1*1 mice with UDCA or OCA at postnatal days 10–14 effectively decreased bilirubin in plasma (by 82% and 62%) and brain (by 72% and 69%), respectively. Mechanistically, our findings indicate that these effects are mediated through induction of protein levels of hUGT1A1 in the intestine, but not in liver. We further demonstrate that in Ugt1a-deficient Gunn rats, UDCA but not OCA significantly decreases plasma bilirubin, indicating that at least some of the hypobilirubinemic effects of UDCA are independent of UGT1A1. Finally, using the synthetic, non-bile acid, FXR-agonist GW4064, we show that some of these effects are mediated through direct or indirect activation of FXR. Together, our study shows that therapeutic bile acids UDCA and OCA effectively reduce both plasma and brain bilirubin, highlighting their potential in the treatment of neonatal hyperbilirubinemia.



Author(s):  
Mari K. Halle ◽  
Marte Sødal ◽  
David Forsse ◽  
Hilde Engerud ◽  
Kathrine Woie ◽  
...  

Abstract Background Advanced cervical cancer carries a particularly poor prognosis, and few treatment options exist. Identification of effective molecular markers is vital to improve the individualisation of treatment. We investigated transcriptional data from cervical carcinomas related to patient survival and recurrence to identify potential molecular drivers for aggressive disease. Methods Primary tumour RNA-sequencing profiles from 20 patients with recurrence and 53 patients with cured disease were compared. Protein levels and prognostic impact for selected markers were identified by immunohistochemistry in a population-based patient cohort. Results Comparison of tumours relative to recurrence status revealed 121 differentially expressed genes. From this gene set, a 10-gene signature with high prognostic significance (p = 0.001) was identified and validated in an independent patient cohort (p = 0.004). Protein levels of two signature genes, HLA-DQB1 (n = 389) and LIMCH1 (LIM and calponin homology domain 1) (n = 410), were independent predictors of survival (hazard ratio 2.50, p = 0.007 for HLA-DQB1 and 3.19, p = 0.007 for LIMCH1) when adjusting for established prognostic markers. HLA-DQB1 protein expression associated with programmed death ligand 1 positivity (p < 0.001). In gene set enrichment analyses, HLA-DQB1high tumours associated with immune activation and response to interferon-γ (IFN-γ). Conclusions This study revealed a 10-gene signature with high prognostic power in cervical cancer. HLA-DQB1 and LIMCH1 are potential biomarkers guiding cervical cancer treatment.



2021 ◽  
Vol 22 (12) ◽  
pp. 6428
Author(s):  
Hanon Lee ◽  
Dong Hun Lee ◽  
Jang-Hee Oh ◽  
Jin Ho Chung

Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.



2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qiangqiang Zhao ◽  
Duanfeng Jiang ◽  
Xiaoying Sun ◽  
Qiuyu Mo ◽  
Shaobin Chen ◽  
...  

Abstract Background Non-Hodgkin’s lymphoma (NHL) is a malignant disease of lymphoid tissue. At present, chemotherapy is still the main method for the treatment of NHL. R-CHOP can significantly improve the survival rate of patients. Unfortunately, DOX is the main cytotoxic drug in R-CHOP and it can lead to adverse reactions. Therefore, it is particularly important to uncover new treatment options for NHL. Results In this study, a novel anti-tumor nanoparticle complex Nm@MSNs-DOX/SM was designed and constructed in this study. Mesoporous silica nanoparticles (MSNs) loaded with Doxorubicin (DOX) and anti-inflammatory drugs Shanzhiside methylester (SM) were used as the core of nanoparticles. Neutrophil membrane (Nm) can be coated with multiple nanonuclei as a shell. DOX combined with SM can enhance the anti-tumor effect, and induce apoptosis of lymphoma cells and inhibit the expression of inflammatory factors related to tumorigenesis depending on the regulation of Bcl-2 family-mediated mitochondrial pathways, such as TNF-α and IL-1β. Consequently, the tumor microenvironment (TME) was reshaped, and the anti-tumor effect of DOX was amplified. Besides, Nm has good biocompatibility and can enhance the EPR effect of Nm@MSNs-DOX/SM and increase the effect of active targeting tumors. Conclusions This suggests that the Nm-modified drug delivery system Nm@MSNs-DOX/SM is a promising targeted chemotherapy and anti-inflammatory therapy nanocomplex, and may be employed as a specific and efficient anti-Lymphoma therapy.



2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jianwei Zhang ◽  
Lei Han ◽  
Feng Chen

Abstract Background Let-7a-5p is demonstrated to be a tumor inhibitor in nasopharyngeal carcinoma. However, the role of let-7a-5p in chronic rhinosinusitis with nasal polyps (CRSwNP) has not been reported. This study is designed to determine the pattern of expression and role of let-7a-5p in CRSwNP. Methods The expression level of let-7a-5p, TNF-α, IL-1β, and IL-6 in CRSwNP tissues and cells were detected by RT-qPCR. Western blot assay was carried out to measure the protein expression of the Ras-MAPK pathway. Dual luciferase reporter assay and RNA pull-down assay were used to explore the relationship between let-7a-5p and IL-6. Results Let-7a-5p was significantly downregulated in CRSwNP tissues and cells. Moreover, the mRNA expression of TNF-α, IL-1β and IL-6 was increased in CRSwNP tissues, while let-7a-5p mimic inhibited the expression of TNF-α, IL-1β and IL-6. Besides that, let-7a-5p was negatively correlated with TNF-α, IL-1β and IL-6 in CRSwNP tissues. In our study, IL-6 was found to be a target gene of let-7a-5p. Additionally, let-7-5p mimic obviously reduced the protein levels of Ras, p-Raf1, p-MEK1 and p-ERK1/2, while IL-6 overexpression destroyed the inhibitory effect of let-7a-5p on the Ras-MAPK pathway in CRSwNP. Conclusion We demonstrated that let-7a-5p/IL-6 interaction regulated the inflammatory response through the Ras-MAPK pathway in CRSwNP.



Author(s):  
Shanshan Jiang ◽  
Rong Wang ◽  
Lu Han ◽  
Kudelaidi Kuerban ◽  
Li Ye ◽  
...  

AbstractThis research aims to investigate the effect of gemcitabine (GEM) on various activities and functions of macrophages. Phagocytosis, cell autophagy and reactive oxygen species (ROS) were analysed by laser scanning confocal microscope. The cell cycle status and major histocompatibility complex II (MHC-II) expression were examined by flow cytometry. Inflammatory cytokine secretion such as tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6) was detected by Elisa assay. The expression of proteins was analysed by western blot method. The results revealed that GEM-induced immune inhibition of M1-type RAW264.7 macrophages activated by interferon-γ (IFN-γ) and lipopolysaccharide (LPS). We also found that GEM inhibited autophagy, as evidenced by the reduced formation of autophagosome-like vacuoles and autophagosomes. Further study showed that incubation of activated macrophages with the autophagy inhibitor 3-MA induced immune suppression. In contrast, treatment with the autophagy inducer trehalose (Tre) restored phagocytosis, TNF-α and IL-6 secretion, and MHC-II expression in GEM-induced immune-inhibited macrophages. GEM reduced immune effect of M1-type RAW264.7 macrophages via inhibiting TNF-α, IL-6 and MHC-II expression. Furthermore, activation of autophagy by Tre reversed GEM-induced immune inhibition of RAW264.7 macrophages.



2017 ◽  
Vol 68 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Mahmoud M. Said ◽  
Marwa M. Abd Rabo

AbstractAluminium (Al) is a neurotoxic metal that contributes to the progression of several neurodegenerative diseases. The aim of the present study was to evaluate the protective effect of dietary eugenol supplementation against aluminium (Al)- induced cerebral damage in rats. Male Wistar rats were divided into four groups: normal controls, rats fed a diet containing 6,000 μg g-1eugenol, rats intoxicated daily with aluminium chloride (84 mg kg-1body weight) p. o. and fed either a basal diet or a eugenol-containing diet. Daily oral administration of Al for four consecutive weeks to rats significantly reduced brain total antioxidant status (TAS) (11.42±0.31 μmol g-1tissue, p<0.001) with a subsequent significant enhancement of lipid peroxidation (MDA) (32.55±1.68 nmol g-1tissue, p<0.002). In addition, Al enhanced brain acetylcholinesterase activity (AChE) (46.22±4.90 U mg-1protein, p<0.001), tumour necrosis factor alpha (TNF-α) (118.72±11.32 pg mg-1protein, p<0.001), and caspase 3 (Casp-3) (8.77±1.26 ng mg-1protein, p<0.001) levels, and in contrast significantly suppressed brain-derived neurotrophic factor (BDNF) (82.74±14.53 pg mg-1protein, p<0.002) and serotonin (5-HT) (1.54±0.12 ng mg-1tissue, p<0.01) levels. Furthermore, decreased glial fibrillary acidic protein (GFAP) immunostaining was noticed in the striatum of Al-intoxicated rats, compared with untreated controls. On the other hand, co-administration of dietary eugenol with Al intoxication restored brain BDNF (108.76±2.64 pg mg-1protein) and 5-HT (2.13±0.27 ng mg-1tissue) to normal levels, enhanced brain TAS (13.43±0.24 μmol g-1tissue, p<0.05), with a concomitant significant reduction in TNF-α (69.98±4.74 pg mg-1protein) and Casp-3 (3.80±0.37 ng mg-1protein) levels (p<0.001), as well as AChE activity (24.50±3.25 U mg-1protein, p<0.001), and increased striatal GFAP immunoreactivity, compared with Al-treated rats. Histological findings of brain tissues verified biochemical data. In conclusion, eugenol holds potential as a neuroprotective agent through its hydrophobic, antioxidant, and anti-apoptotic properties, as well as its neurotrophic ability against Al-induced brain toxicity in rats.



2006 ◽  
Vol 44 (5) ◽  
pp. 377-383 ◽  
Author(s):  
Hanna-Maaria Lakka ◽  
Timo A. Lakka ◽  
Tuomo Rankinen ◽  
Treva Rice ◽  
D.C. Rao ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document