Bio-Methane Potential (BMP) of Cassava Pulp Waste and Effect of Alkaline Pre-Treatment

Cassava starch processing industry produces cassava pulp as a by-product or waste. In the well-known Duong Lieu village, this waste is released in surrounding environment without treatment causing serious environmental problems. The study aimed to (1) determine the Biomethane Potential (BMP) of the waste and to (2) find out if alkaline pre-treatment would improve it. Different cassava pulp samples were going through BMP test: untreated sample; pre-treated samples at different NaOH doses of 2, 6, 8 wt.% (dry weight-based) and pre-treated samples at different NaHCO3 doses of 2, 4, 6, 8 wt.% (dry weight based). BMP assays were conducted in 590mL bottles at 37oC for 40 days. As the result, BMP of the untreated waste was 281 NmLCH4/gVS and alkaline pretreatment increased BMP of the waste up to 479 mLCH4/gVS by treatment with NaOH 6 wt.% and 450 mLCH4/gVS by treatment with NaHCO3 6 wt.%. In addition, there was a significant reduction of lignin content of the substrate after alkaline pre-treatment. The results show that cassava pulp waste has moderate potential for biogas recovery. In addition, alkaline pre-treatment by either NaOH or NaHCO3 would significantly improve its BMP, possibly thanks to the reduction of lignin content.

2018 ◽  
Vol 56 (2C) ◽  
pp. 171-177
Author(s):  
Nguyen Pham Hong Lien

Arrowroot waste has been being discharged without treatment in powder/starch processing villages in Viet Nam causing serious environmental problem. This waste is degradable and might have good Biomethane Potential (BMP) which leads to a possibility to treat them by anaerobic digestion. Therefore, the study aimed to find out the BMP of the waste and to find out if alkaline pre-treatment would improve it. Solid waste from arrowroot powder processing was collected in Duong Lieu village, Ha Noi, and different samples were going through BMP test: the untreated sample and NaOH pre-treated samples at different NaOH dose from 3 to 9 wt. % (dry weight based). BMP was determined in 590 mL bottles at 37 oC for 50 days. As the results, BMP of the original arrowroot waste sample was 253 NmLCH4/gVS and alkaline pretreatment increased BMP of the waste 21.9 % at 7 % NaOH. The reduction of lignin content and hemicellulose content at this pretreatment were 7.2 % and 9.4 %, respectively. The results show that the waste has potential for methane recovery and alkaline pre-treatment by NaOH would slightly improve its biodegradability. 


2021 ◽  
Vol 924 (1) ◽  
pp. 012071
Author(s):  
N A Rohma ◽  
S Suhartini ◽  
I Nurika

Abstract Production of biogas from lignocellulosic biomass by anaerobic digestion (AD) has attracted much interest. Oil palm empty fruit bunches (OPEFB), one of lignocellulosic biomass, is highly abundant in Indonesia and has potential as feedstock for bioenergy production such as biogas or methane. Yet, pre-treatments are needed to improve biogas production due to its complex crystalline structures. Chemical pre-treatments with acid or alkaline solution were reported to increase cellulose or highly reduce the lignin content of OPEFB. This study aimed to evaluate the effect of acid and alkaline pre-treatments on the characteristics of OPEFB and methane potential. The acid pre-treatment experimental design was used factor of H2SO4 concentration (1, 1.3, and 1.6 (%v/v)) and NaOH concentration (1.8, 2.8, and 3.8 (%w/v)). Methane potential evaluation was carried out using the biochemical methane potential (BMP) test with the Automatic Methane Potential Test System (AMPTS) II under mesophilic condition (37°C), operated for 28 days. The results showed that both dilute acid and alkaline pre-treatment positively impact altering the characteristics of OPEFB, hence the specific methane potential. Alkaline pre-treatment with NaOH 3.8 (%w/v) gave the highest average SMP value of 0.161 ± 0.005 m3 CH4/kgVSadded.


1998 ◽  
Vol 38 (2) ◽  
pp. 193-200 ◽  
Author(s):  
S. Pareek ◽  
S. K. Kim ◽  
S. Matsui ◽  
Y. Shimizu

A Biochemical methane potential (BMP) test and Serum Bottle Reactor (SBR) test were used to compare hydrolysis (mineralization) of lignocellulosic materials under sulfidogenic and methanogenic conditions. Lignocellulosic carbon mineralization under sulfidogenic conditions was found to be more than 2 times higher than under methanogenic conditions. The percentages of lignocellulosic carbon mineralized under methanogenic condition were 18.0% and 10.71% while under sulfidogenic conditions 36.69% and 27.44% for office paper and newspaper, respectively. Although a poor linear relationship between the percentage of carbon mineralization and percentage lignin content was observed, but in general a decrease in mineralization of lignocellulosic carbon was observed with the increase in lignin content. A method based on selective inhibition of microorganism activity, by 3% toluene, was used to measure the initial rate of lignocellulosic material mineralization and the accumulation of mineralized products (i. e. sugars). Sugars linearly accumulated over time and the accumulation rates of glucose and xylose were calculated. The accumulation rates of glucose under methanogenic condition were 1.302, μM/g-dry wt hr and 0.004, μM/g-dry wt hr while under sulfidogenic condition they were 2.624, μM/g-dry wt hr and 2.279 μM/g-dry wt hr for offce and newspaper, respectively.


2021 ◽  
Vol 924 (1) ◽  
pp. 012072
Author(s):  
I Nurika ◽  
A Rahmadhanti ◽  
S Suhartini

Abstract Corn cobs are one of the potential feedstocks consisting of cellulose, hemicellulose and lignin, which provide potential lignocellulose biomass to be converted into renewable energy such as biogas through anaerobic digestion (AD). However, the recalcitrant structure of corn cobs lignocellulose makes it resistant to microbial access to the cell wall, and therefore the effective pre-treatment needs to be conducted. The biological pre-treatment using lignin-degrading bacteria is one of the promising bioconversion processes which will help to break down the lignocellulose structure. This study aims to analyse the ability of bacteria, Agrobacterium sp., Lysinibacillus sphaericus and Paenibacillus sp. in degrading lignin of corn cobs and therefore will enhance the methane released from AD. The ability of bacteria to degrade lignin was observed by analysis of total reducing sugar, total soluble phenols, lignin content, and weight loss, while the methane production was determined by the biochemical methane potential (BMP). The percentage of lignin content of untreated and pre-treated corn cobs with bacteria Agrobacterium sp., L. sphaericus and Paenibacillus sp. is 18.34%; 9.66%; 11.48% and 9.06%, respectively. The methane concentration (specific methane production) produced by using inoculum of Agrobacterium sp., L. sphaericus and Paenibacillus sp. with the addition of pre-treated corn cobs are 1.79%; 1.16% and 2.51%, respectively. These results were higher than the inoculum with the addition of untreated corn cobs.


2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Harjinder Kaur ◽  
Raghava R. Kommalapati

AbstractAnaerobic co-digestion is widely adopted to enhance process efficacy by balancing the C/N ratio of the feedstock while converting organic wastes to biomethane. Goat manure (GM) and cotton gin trash (CGT) were anaerobically co-digested in triplicate batch bioreactors. The process was optimized and evaluated utilizing mathematical equations. The liquid fraction of the digestate was analyzed for nitrate and phosphate. The co-digestions with 10 and 20% CGT having the C/N ratios of 17.7 and 19.8 yielded the highest and statistically similar 261.4 ± 4.8 and 262.6 ± 4.2 mL/gvs biomethane, respectively. The biodegradability (BD) of GM and CGT was 94.5 ± 2.7 and 37.6 ± 0.8%, respectively. The BD decreased proportionally with an increase in CGT percentage. The co-digestion having 10% CGT yielded 80–90% of biomethane in 26–39 d. The modified Gompertz model-predicted and experimental biomethane values were similar. The highest synergistic effect index of 15.6 ± 4.7% was observed in GM/CGT; 30:70 co-digestion. The concentration of nitrate and phosphate was lower in the liquid fraction of digestate than the feedstocks, indicating that these nutrients stay in the solid fraction. The results provide important insights in agro-waste management, further studies determining the effects of effluent application on plants need to be conducted.


1984 ◽  
Vol 35 (2) ◽  
pp. 115 ◽  
Author(s):  
DJ Mares

Germinability in harvest-mature wheat grain showed a marked dependence on temperature. The optimum temperature for the complete germination of all grains ranged from 20�C for the non-dormant variety, Timgalen, to 10�C for the strongly dormant red wheat RL 4137, whereas the optimum in terms of the shortest lag period ranged from 25� to 15�C for the same varieties. Germinability gradually increased during post-harvest storage and, for after-ripened grain, the optimum temperature for both complete germination and shortest lag period were greater than 30�C. Germinability could also be increased by pre-treating imbibing grains at temperatures of 5�, 10� or in some cases 15�C. This treatment was only effective for grain at moisture contents >25% (dry weight) and the effect was not reversed by redesiccation. The pre-treatment temperature required for maximum germinability decreased with increasing levels of grain dormancy. Complete removal of dormancy required a pre-treatment period of c. 48 h; however, lesser periods gave the shortest lag period in the case of the dormant varieties. The implications of these results for the utilization of dormancy in the development of preharvest sprouting damage tolerant varieties and their subsequent use in practice are discussed.


2014 ◽  
Vol 70 (4) ◽  
pp. 599-604 ◽  
Author(s):  
Bing Wang ◽  
Ivo Achu Nges ◽  
Mihaela Nistor ◽  
Jing Liu

In this work, biochemical methane potential (BMP) tests with cellulose as a model substrate were performed with the aid of three manually operated or conventional experimental setups (based on manometer, water column and gas bag) and one automated apparatus specially designed for analysis of BMP. The methane yields were 340 ± 18, 354 ± 13, 345 ± 15 and 366 ± 5 ml CH4/g VS obtained from experimental setups with manometer, water column, gas bag, and automatic methane potential test system, which corresponded to a biodegradability of 82, 85, 83 and 88% respectively. The results demonstrated that the methane yields of cellulose obtained from conventional and automatic experimental setups were comparable; however, the methane yield obtained from the automated apparatus showed greater precision. Moreover, conventional setups for the BMP test were more time- and labour-intensive compared with the automated apparatus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leilah Krounbi ◽  
Akio Enders ◽  
John Gaunt ◽  
Margaret Ball ◽  
Johannes Lehmann

AbstractThe conversion of dairy waste with high moisture contents to dry fertilizers may reduce environmental degradation while lowering crop production costs. We converted the solid portion of screw-pressed dairy manure into a sorbent for volatile ammonia (NH3) in the liquid fraction using pyrolysis and pre-treatment with carbon dioxide (CO2). The extractable N in manure biochar exposed to NH3 following CO2 pre-treatment reached 3.36 g N kg−1, 1260-fold greater extractable N than in untreated manure biochar. Ammonia exposure was 142-times more effective in increasing extractable N than immersing manure biochar in the liquid fraction containing dissolved ammonium. Radish and tomato grown in horticultural media with manure biochar treated with CO2 + NH3 promoted up to 35% greater plant growth (dry weight) and 36–83% greater N uptake compared to manure biochar alone. Uptake of N was similar between plants grown with wood biochar exposed to CO2 + NH3, compared to N-equivalent treatments. The available N in dairy waste in New York (NY) state, if pyrolyzed and treated with NH3 + CO2, is equivalent to 11,732–42,232 Mg N year−1, valued at 6–21.5 million USD year−1. Separated dairy manure treated with CO2 + NH3 can offset 23–82% of N fertilizer needs of NY State, while stabilizing both the solid and liquid fraction of manure for reduced environmental pollution.


2017 ◽  
Vol 13 (3) ◽  
pp. 1-9
Author(s):  
Yasmeen Salih Mahdi ◽  
Asem Hassan Mohammed ◽  
Alaa Kareem Mohammed

Abstract   In this study, modified organic solvent (organosolv) method was applied to remove high lignin content in the date palm fronds (type Al-Zahdi) which was taken from the Iraqi gardens. In modified organosolv, lignocellulosic material is fractionated into its constituents (lignin, cellulose and hemicellulose). In this process, solvent (organic)-water is brought into contact with the lignocellulosic biomass at high temperature, using stainless steel reactor (digester). Therefor; most of hemicellulose will remove from the biomass, while the solid residue (mainly cellulose) can be used in various industrial fields. Three variables were studied in this process: temperature, ratio of ethanol to water and digestion time. Statistical experimental design type Central Composite Design (CCD) has been used to find a mathematical relationship between the variables and the remaining lignin percent as dependent variable. The results obtained in this study were represented by a polynomial mathematical equation of the second degree.  The results showed that the best digestion time was (80 minutes), which gave the best percent remaining concentration of lignin (3%) at temperature of 185oC and ratio of ethanol: water equal to 50: 50 wt/wt. In order to reduce digesting time, the effect of using different catalysts have been studied such as (NaOH, H2SO4, Ca (OH) 2) at low concentration (0.025, 0.025, 0.05M) respectively. It was found that the best catalyst is sodium hydroxide at concentration (0.025) mol/L which gave the same percent of  lignin 3% but with low digestion time about 30 min. Keywords: Biomass pre-treatment, delignification, lignin, organosolv, date palm fronds.


Sign in / Sign up

Export Citation Format

Share Document