scholarly journals STUDY ON CHARACTERISTICS OF A DOWNHOLE VORTEX JET PUMP

2021 ◽  
Vol 2(73) (2) ◽  
pp. 22-32
Author(s):  
Denis Panevnyk ◽  

This article analyzes the possibility of increasing the efficiency of using downhole jet pumps by swirling the injected flow. To analyze the peculiarities of the local swirling of injected flow, design and technological parameters in the form of the inclination angle of guiding elements, the diameter of the helical trajectory described by the fluid particles, and the flow rates of the swirling flow are studied. Based on the application of the conservation law of fluid momentum in adjacent jets with a parabolic pressure distribution, equations to determine the pressure characteristic of a jet pump are obtained, taking into account the additional dynamic pressure made by swirling the injected flow. In the process of analyzing the obtained relations, has been set the dependence of the relative pressure growth and the efficiency of the ejection system under the conditions of injected flow swirling on the relative flow rate of a jet pump, and an inversely proportional dependence of the above parameters on its main geometric parameter in the form of the ratio of cross-sectional areas of the mixing chamber and the nozzle.

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (9) ◽  
pp. 579-586
Author(s):  
Denis Panevnyk ◽  

The article is devoted to the theoretical study of the operation process of the borehole ejection system as part of the tubing string, jet pump and packer installed below; the system implements the hydrojet method of oil well operation. The improved design of the jet pump contains inclined guiding elements placed in its receiving chamber for swirling the injected flow, which results in an increase in the efficiency of the borehole ejection system. Based on the law of conservation of liquid momentum in the mixing chamber of the jet pump and taking into account the inertial pressure component caused by the swirling of the injected flow, there is obtained the relative form of the equation of the ejection system pressure characteristic, the structure of which contains a component that determines the value of the additional dynamic head. According to the results obtained, the additional dynamic head caused by swirling of the injected flow is determined by the ratio of the geometric dimensions of the flow path of the jet pump, the angle of inclination of the elements for creating vortex flows, and the ratio of the power and reservoir fluids. In the case of asymmetric swirling of the injected flow, an increase in the value of the relative displacement of the jet pump decreases the value of the additional dynamic pressure. In order to study the effect of flow swirling on the energy characteristic of the ejection system, the pressure characteristic of the jet pump was transformed into the dependence of its efficiency on the injection coefficient. Jet pump models with the ratio of the cross-sectional areas of the mixing chamber and the nozzle of 5.012 and 6.464, respectively, were used to check the adequacy of the theoretical pressure and energy characteristics obtained during the simulation of the performance process of the concentric ejection system. The average error in the theoretical determination of the pressure and efficiency of the vortex jet does not exceed 8.65% and 6.48%, respectively.


Author(s):  
Ye. I. Kryzhanivskyy ◽  
D. O. Panevnyk

Insufficient energy performance of ejection equipment and a high probability of non-operating modes of its operation reduce the efficiency of downhole jet pumps. The method of determining the design and operating parameters of the well ejection system, which provide the maximum efficiency of the jet pump, is presented.  The proposed algorithm for determining the optimal values of the geometric dimensions of the flowing part of the jet pump involves the construction of a series of pressure characteristics for different values of its geometric parameter, the calculation of the efficiency and the determination of the injection ratio and the relative pressure corresponding to its maximum values.  During the studies, the main geometric parameter of the jet pump varied in the range from 2 to 6, given that these geometric dimensions are used in jet devices common in the oil industry. The optimal dimensions of the current part of the jet pump are obtained in the process of studying its pressure characteristics, and the optimal dimensions of the washing system of the bit - in the process of studying the characteristics of the hydraulic system. The design of an at-bit ejection system, which allows to increase the mechanical drilling speed, the passage of the bit, to stabilize the moment on the bit, to reduce its level of vibration and to control the antiaircraft angles of the well is considered. The efficiency of using at-bit jet pumps is in the following: an increase in the mechanical drilling speed up to 18.7%, the passage of the bit up to 50.8%. The research established the optimal diameters of the working nozzle, mixing chamber and bit nozzles, the distance between the working nozzle and the mixing chamber, the injection ratio and the relative pressure of the at-bit jet pump. The obtained values ​​of design and mode parameters exclude the occurrence of cavitation modes of operation of the ejection system and allow the operation of jet pumps with maximum efficiency.


Author(s):  
Tarek Meakhail ◽  
Ibrahim Teaima

The slurry jet pump with scouring nozzle system can be used in dredging of sites, which are difficult to access or need handling of equipments that are used for the intake of pumping stations under bridges and concrete water channels. This system is suitable for sand, silt, sludge, mud, and other organic materials. The aim of this study is to investigate the performance of water and slurry jet pumps. The effects of the pump-operating conditions and geometries on its performance were investigated. The experimental rig was constructed in such a way that the driving nozzle diameter can be changed. In this study, three different diameters of driving nozzles, 10, 12.7, and 16 mm, have been used with one mixing chamber of 25.4 mm diameter (i.e. three different area ratios of R = 0.155, 0.25, and 0.4). Also, the effect of driving pressure has been investigated. The results show that increasing the area ratio decreases the maximum mass flow ratio. The results of computational fluid dynamics were found to agree well with actual values obtained from the experimental water and slurry jet pump.


2008 ◽  
Vol 614 ◽  
pp. 329-354 ◽  
Author(s):  
R. I. BOWLES ◽  
N. C. OVENDEN ◽  
F. T. SMITH

This theoretical investigation of steady fluid flow through a rigid three-dimensional branching geometry is motivated by applications to haemodynamics in the brain especially, while the flow through a tube with a blockage or through a collapsed tube provides another motivation with a biomedical background. Three-dimensional motion without symmetry is addressed through one mother vessel to two or several daughters. A comparatively long axial length scale of the geometry leads to a longitudinal vortex system providing a slender-flow model for the complete mother-and-daughters flow response. Computational studies and subsequent analysis, along with comparisons, are presented. The relative flow rate varies in terms of an effective Reynolds number dependence, allowing a wide range of flow rates to be examined theoretically; also any rigid cross-sectional shape and ratio of cross-sectional area expansion or contraction from the mother vessel to the daughters can be accommodated in principle in both the computations and the analysis. Swirl production with substantial crossflows is found. The analysis shows that close to any carina (the ridge separating daughter vessels) or carinas at a branch junction either forward or reversed motion can be observed locally at the saddle point even though the bulk of the motion is driven forward into the daughters. The local forward or reversed motion is controlled, however, by global properties of the geometry and incident conditions, a feature which applies to any of the flow rates examined.


2018 ◽  
Vol 12 (5) ◽  
pp. 31-38
Author(s):  
L. A. Marchenko ◽  
M. A. Safonov

Agricultural boom sprayers are equipped with injection sprayers of mainly foreign origin. The main parameters of the injection sprayers shown in the catalogs display the consumption characteristics in cer­tain ranges without taking into account the design parameters.(Research purpose)Determination of the design and technological parameters of an injection sprayer for the introduction of pesticides.(Materials and methods)The injection sprayer belongs to the class of two­phase liquid­gas isothermal jet devices with the formation of an air­gas mixture at the outlet. It has been established that the design model of the working process of an injection sprayer is based both on the laws of the conservation of mass, energy, momentum, as well as theoretical relation­ships in the form of equations describing two­phase jet devices, and empirical relationships characterizing flow parameters, geometric transverse and longitudinal dimensions of the spray channels.(Results and discussion)The following analytical relationships have been obtained: the relative pressure difference generated by an injec­tion sprayer and the volume injection coefficient for different surface area ratios of the working nozzle to the flow section of the sprayer; the ratio between the cross­sectional area of the mixing chamber to the area of the working nozzle outlet and the injection ratio; relative pressure difference and the injection ratio; the ratio be­tween the cross­sectional area of the mixing chamber and the working nozzle and the relative pressure difference. The authors have determined a set of dimensionless pressure characteristics of the injection sprayer for different ratios between the cross­sectional areas of the working nozzle and the mixing chamber. It has been established that the ratio between the cross sections of the mixing chamber area and the working nozzle area increases as the injection ratio increases. It has been shown that for each injection coefficient, there is an achievable relative pressure difference in the injection sprayer.(Conclusions)The authors have proposed the design equations that determine the characteristics of an injection sprayer and its main design parameters – the diameters of nozzle and mixing chambers. They have calculated the main dimensions of the sprayer for aerial top­dressing by introducing working solutions of pesticides.


Author(s):  
O. Panevnyk

The method of choosing geometric parameters of the well hole pump which ensures its operation in the mode of maximum efficiency is proposed. According to the algorithm developed, the ratio of the diameters of the working nozzle, the mixing chamber and the diffuser of the jet pump, as well as the distance between the nozzle and the speed equalization chamber and the axial dimensions of the flow part elements are regulated. During the process of establishing the required dimensions of the elements of the ejection system, the nature of the free working jet into the mixing chamber of the jet pump is taken into account, which determines the shape and structure of the estimated ratios governing the axial distance between the working nozzle and the resuscitation chamber of the mixing streams. The relationship between the mixing chamber diameters and the working nozzle and the amount of the jet pump coefficient of ejection which ensures its operation with the maximum possible values of the ejection system efficiency is shown. The analytical nature of the establishment of hydraulic interconnections among the elements of the ejection system is complemented by the experience of the practical use of deep jet pumps in the implementation of certain technological processes of construction, operation and repair of oil wells.


Author(s):  
Ye. І. Kryzhanivskyi ◽  
D. О. Panevnyk

The article presents the sequence of deriving the equations which characterize the hydraulic system of jet pumps that carry out suction and injection-suction bottom flushing while drilling the production wells. The nature of flow distribution in the borehole ejection systems of the suction and injection-suction types is analyzed. The analysis is carried out taking into consideration the peculiarities of the calculation of branched hydraulic systems. While studying the movement of the flows in the bottom circulation circuits, the authors take into account the equation of the balance of the flow-rate at nodal points and hydraulic losses in parallel parts of the system. The developed mathematical models are based on the study of the changes in hydrodynamic pressures which occur in characteristic sections of a jet pump. The pressure ratio of mixed, injected and operating flows is presented as non-dimensional relative pressure of the ejection system. The dependence of non-dimensional relative pressure on the relative flow rate determines the characteristic of the hydraulic system of a jet pump. The relative flow rate or injection ratio of a jet pump is defined as the ratio of flow rate to injected and work flow. While analyzing the developed mathematical models, the authors specify the relation between the design and operating parameters of a jet pump. These parameters ensure its operation with maximum efficiency. Based on the study of the influence of the correlation between the diameters of the jet pump nozzles and the flushing system of the bit, the authors specify parameters which are optimal in terms of energy performance. The article provides the example of graphical determination of the operating point of a pumping unit. This determination is based on a simultaneous solution of the equations of the characteristics of the jet pump and the hydraulic system in which it operates. The improved techniques allow to predict the mode parameters of ejection systems and to determine the size of flowing part of the jet pump. They provide maximum energy performance of its workflow.


Author(s):  
Robert A. Leishear ◽  
William M. Bennett ◽  
Jackie Cooper

Low flow steam siphon jet pumps are referred to as rate jets, since these pumps have the ability to control flow rates by varying the steam pressure applied to the jet. The jet pump design consists of several components. Steam inlet piping is connected to a steam nozzle that directs steam into the jet body to provide energy to lift a liquid, or feed. Feed is lifted up through the suction lift piping, where the condensing steam forces the liquid into a diffuser and out of the jet discharge piping. Closed form equations cannot model these jets, and commercial computer models to describe jet performance are still in a state of development. In general, experimental data is required to determine the performance characteristics of this type of jet design. Numerous tests were performed on different jet designs to evaluate the effects of motive steam pressures, suction lift, discharge head, jet dimensions, and the specific gravity of the fluid that is lifted and pumped by the jet. Additionally, the system installation significantly affects the performance of siphon jets, and one such installation was studied.


2021 ◽  
Vol 44 (4) ◽  
pp. 433-440
Author(s):  
A. P. Melnikov ◽  
N. A. Buglov

The purpose of the study is to develop a supra bit jet pump taking into account the unsteadiness of low-speed drilling for crushing the cuttings injected from the annular space under productive formation opening. The article proposes a device for drill string bottom assembly intended for the initial opening of the productive formation. The device includes a supra bit jet pump and a colmatator. The jet pump creates an additional circulation loop of the drilling fluid above the well bottom, crushes the cuttings injected from the annular space in the mixing chamber and delivers it to the colmatator. An additional circulation loop above the well bottom creates a local drawdown of the formation while maintaining the hydrostatic pressure in the well. Crushing of cuttings in the mixing chamber of the jet pump occurs due to the creation of cross flows in the jet pump. The cross flows are provided due to the angular and eccentric displacement of the working nozzle of the jet pump relative to the mixing chamber. The colmatator creates an impermeable screen on the borehole wall for temporary isolation of the productive formation under initial opening. The conducted study allowed the authors to propose head characteristics of the jet pump taking into account the angular, eccentric displacement of the working nozzle. The head characteristic of the jet pump has been developed for the unsteady operation of the jet pump in the drill string bottom assembly. The head characteristics take into account the roughness of the flow path of the jet pump. Using the head characteristics, the permissible displacements of the working nozzle of the jet pump have been determined. Recommendations for the design of jet pumps for drill string bottom assemblies are proposed.


Author(s):  
O. Ya. Dubei

In order to test the operational efficiency of jet pumps which are installed at different depths in artificial lift-ed oil wells, it is necessary to establish the relation between their geometry and the maximum achievable operat-ing parameters. For this purpose, a series of experimental laboratory studies is conducted. Their main task is to identify the optimal parameters of a jet pump that works with gas-liquid flows. In the experimental setup, the fluid is supplied by an electric centrifugal pump and the air is injected by a compressor. The setup provides the possibility to regulate the fluid pressure before and after the jet pump, as well as the pressure and gas supply at its inlet. The basic parameters of the setup are calculated according to the criteria of the resemblance to real wells. The influ-ence of the jet pump geometry on its working parameters is estimated by replacing its main elements (nozzle, mix-ing chamber, diffuser). For each of the suggested designs of the jet pump, the pressure and the flow rates in its main cross-sections are measured and their measurement values are compared. On the basis of this comparison the author finds the main regularities for choosing optimal geometry which provides maximum gas offtaking or minimum pressure losses. The basic results of the experimental study are presented in the form of graphical dependencies which allow to make conclusions about the operational efficiency of jet pumps.


Sign in / Sign up

Export Citation Format

Share Document