scholarly journals The Influence of the Jet Pump Geometry on its Main Technological Parameters

Author(s):  
O. Ya. Dubei

In order to test the operational efficiency of jet pumps which are installed at different depths in artificial lift-ed oil wells, it is necessary to establish the relation between their geometry and the maximum achievable operat-ing parameters. For this purpose, a series of experimental laboratory studies is conducted. Their main task is to identify the optimal parameters of a jet pump that works with gas-liquid flows. In the experimental setup, the fluid is supplied by an electric centrifugal pump and the air is injected by a compressor. The setup provides the possibility to regulate the fluid pressure before and after the jet pump, as well as the pressure and gas supply at its inlet. The basic parameters of the setup are calculated according to the criteria of the resemblance to real wells. The influ-ence of the jet pump geometry on its working parameters is estimated by replacing its main elements (nozzle, mix-ing chamber, diffuser). For each of the suggested designs of the jet pump, the pressure and the flow rates in its main cross-sections are measured and their measurement values are compared. On the basis of this comparison the author finds the main regularities for choosing optimal geometry which provides maximum gas offtaking or minimum pressure losses. The basic results of the experimental study are presented in the form of graphical dependencies which allow to make conclusions about the operational efficiency of jet pumps.

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 83
Author(s):  
Oleg Bazaluk ◽  
Olha Dubei ◽  
Liubomyr Ropyak ◽  
Maksym Shovkoplias ◽  
Tetiana Pryhorovska ◽  
...  

During oil fields operation, gas is extracted along with oil. In this article it is suggested to use jet pumps for utilization of the associated oil gas, burning of which causes environmental degradation and poses a potential threat to the human body. In order to determine the possibility of simultaneous application of a sucker-rod pump, which is driven by a rocking machine, and a jet pump (ejector) in the oil well, it is necessary to estimate the distribution of pressure along the borehole from the bottomhole to the mouth for two cases: when the well is operated only be the sucker-rod pump and while additional installation of the oil-gas jet pump above its dynamic level. For this purpose, commonly known methods of Poettman-Carpenter and Baksendel were used. In addition, the equations of high-pressure and low-pressure oil-gas jet pumps were obtained for the case, when the working stream of the jet pump is a gas-oil production mixture and the injected stream is a gas from the annulus of the well. The values which are included in the resulting equations are interrelated and can only be found in a certain sequence. Therefore, a special methodology has been developed for the practical usage of these equations in order to calculate the working parameters of a jet pump based on the given independent working parameters of the oil well. Using this methodology, which was implemented in computer programs, many operating parameters were calculated both for the well and for the jet pump itself (pressures, densities of working, injected and mixed flows, flow velocities and other parameters in control sections). According to the results of calculations, graphs were built that indicate a number of regularities during the oil well operation with such a jet pump. The main result of the performed research is a recommendation list on the choice of the oil-gas jet pump location inside the selected oil well and generalization of the principles for choosing the perfect location of such ejectors for other wells. The novelty of the proposed study lays in a systematic approach to rod pump and our patented ejector pump operation in the oil and chrome plating of pump parts. The result of scientific research is a sound method of determining the rational location of the ejector in the oil well and the calculation of its geometry, which will provide a complete selection of petroleum gas released into the annulus of the oil well. To ensure reliable operation of jet and plunger pumps in oil wells, it is proposed to use reinforcement of parts (bushings, plungers, rods, etc.) by electrochemical chromium plating in a flowing electrolyte. This has significantly increased the wear resistance and corrosion resistance of the operational surfaces of these parts and, accordingly, the service life of the pumps. Such measures will contribute to oil production intensification from wells and improve the environmental condition of oil fields.


2021 ◽  
Vol 2(73) (2) ◽  
pp. 22-32
Author(s):  
Denis Panevnyk ◽  

This article analyzes the possibility of increasing the efficiency of using downhole jet pumps by swirling the injected flow. To analyze the peculiarities of the local swirling of injected flow, design and technological parameters in the form of the inclination angle of guiding elements, the diameter of the helical trajectory described by the fluid particles, and the flow rates of the swirling flow are studied. Based on the application of the conservation law of fluid momentum in adjacent jets with a parabolic pressure distribution, equations to determine the pressure characteristic of a jet pump are obtained, taking into account the additional dynamic pressure made by swirling the injected flow. In the process of analyzing the obtained relations, has been set the dependence of the relative pressure growth and the efficiency of the ejection system under the conditions of injected flow swirling on the relative flow rate of a jet pump, and an inversely proportional dependence of the above parameters on its main geometric parameter in the form of the ratio of cross-sectional areas of the mixing chamber and the nozzle.


Volume 3 ◽  
2004 ◽  
Author(s):  
Prem Chand ◽  
K. Govinda Rajulu ◽  
Y. Krishna Reddy

The paper presents a new approach to predict the two-phase performance of jet-pumps under interference conditions. We limit our study mainly to diffuser and transport regions of the jet pump. The five essential pre-requisites which form the backbone of our approach are a fairly generalized and accurate approach to (i) solid-fluid interaction, (ii) particle diffusion under generalized flow field, (iii) friction factor-Reynolds number equation, (iv) solid-fluid flow through ducts and (v) mixing of primary and secondary jets using the approach of Wang et al. [1] based on boundary layer concept. The extensive experimental data of several research workers along with fresh data generated on specially designed test-rig support the new approach.


Author(s):  
Dieter Mewes ◽  
Dirk Schmitz

Pressurized chemical reactors or storage vessels are often partly filled with liquid mixtures of reacting components. In case of an unexpected and uncontrolled exothermic reaction the temperature might increase. By this the pressure follows and would exceed a critical maximum value if there would be no mechanism to decrease the pressure and the temperature in a very short period of time. A sudden venting by the opening of a safety valve or a rupture disc causes a rapid vaporization of the reacting liquid mixture. A two-phase flow will pass the ventline. Since two-phase gas-liquid flows cause high pressure losses and give rise to limited mass flows leaving the reactor, single-phase gas flows are preferred. This is emphasized by a periodic venting mechanism of the pressurized vessel. Each time the two-phase flow from the bubbling-up liquid inside the vessel reaches a certain cross-section close the entrance of the ventline. The outlet-valve is closed. Inside the vessel the increasing pressure stops the two-phase flow and only single phase flow is leaving the vessel. The two-phase bubbly flow inside the vessel is detected by a tomographic measurement device during the venting process. Experimental results for local and time dependant phase void fractions as well as pressures are compared with those obtained by numerical calculations of the instationary bubble swarm behavior inside the vessel.


Author(s):  
Daniel V. Sommerville ◽  
Hardayal Mehta ◽  
Robert Carter ◽  
Jonathon Kubiak

Jet pumps in a boiling water reactor (BWR) are located in the annulus region between the core shroud and the reactor vessel wall and provide core flow to control reactor power. Between 16 and 24 jet pumps are included in BWR/3 through BWR/6 plants, depending on the plant rating. The inlet mixer assembly of the jet pump is secured in place with a hold down mechanism called a jet pump beam. This beam is fabricated of alloy X-750 and tensioned to 58–74% of the yield stress of the material, depending on the beam design. In recent years, more attention has been placed upon inter-granular stress corrosion cracking (IGSCC) of alloy X-750 BWR internal components as a result of in-service cracking and failures. BWR plant owners have implemented actions to manage IGSCC of jet pump beams and assemblies through increased inspections and changes to process specifications for X-750. However, a thorough understanding of the flaw tolerance of the jet pump beam was not available to guide the periodicity of inspections as well as to define critical flaw sizes needed to validate the capability of inspection techniques. This paper describes a linear elastic fracture mechanics (LEFM) evaluation in which the flaw tolerance of the existing jet pump beam designs is established and used to recommend inspection frequencies for the jet pump beam. Industry operating experience is used to assess the credibility of the results obtained from this evaluation. This work illustrates an example of the use of LEFM to develop a technically defensible basis for the required inspection regions and the frequency of inspection for an alloy X-750 BWR internal component and helps to establish the necessary sensitivity of non-destructive examination technology to be used to examine the component.


Author(s):  
Hong Gao ◽  
Wanlai Lin ◽  
Fangming Ye

The purpose of the present study is to investigate the global performance and three dimensional flow fields in a water-jet pump. TASCflow software is employed to simulate the rotator-stator coupling flow field. A standard k-ε turbulence model combined with standard wall functions is used. In order to investigate the effect of a rear stator on flow fields, the flows in two water-jet pumps with and without a rear stator are studied. The CFD predicted global performances are in good agreement with the experimental results. Then the flow fields, such as the pressure distribution on the blade surfaces, the axial and tangential velocities distribution, especially the radial loading distribution are investigated at different flow rates. In addition, the effect of a rear stator and different spacing between the rotor and the stator on the global performance and the flow fields of the water-jet pump are also investigated.


Author(s):  
J. C. Law ◽  
F. J. Moody ◽  
A. L. Laursen

Time-dependent fluid pressure forces on jet pump components have been observed to cause destructive mechanical vibrations at a number of BWR plants. A test has been proposed for the purpose of studying the fluid-structure interaction phenomena and to determine what design or operational modifications can be imposed to mitigate or remove the vibration problem. Due to multi-system interactions of this problem, a full-scale test of water flow through a jet pump at reactor conditions is recommended over a sub-scale test. Each system to be studied imposes additional constraints to the modeling laws. Acoustic effects, vortex shedding or shear layer instability, and the fundamental beam mode of the jet pump diffuser all have similar characteristics, or response times. The need to maintain the time scale ratios for all systems implies that a full size system at full size structural and fluid parameters is the most likely success path in obtaining accurate and relevant data.


Author(s):  
Rogelio Castillo-Dura´n ◽  
Javier Ortiz-Villafuerte ◽  
He´ctor Herna´ndez-Lo´pez ◽  
Gustavo Alonso-Vargas ◽  
Gabriel Calleros-Micheland

The use of noise analysis for detection of BWR component malfunction is a powerful tool in determining abnormal operation conditions, during the life of a nuclear power plant. Since the 80s, several nuclear reactors have reported problems related with jet pumps and recirculation loops. The NRC, in the IE Bulletin 80-07, recommended performing periodic monitoring to individual pressure drop jet pumps, to prevent structural failure. In this work, noise analysis methods are used for detection of jet pumps abnormal operation conditions in a BWR. Power signals obtained from the backup process computer of a BWR are analyzed with a home-developed software, called NOISE, for noise diagnostic of power signals. The computer program takes individual signals from the tabular report of the process computer. The normalized power spectral density (NPSD) is then obtained, using a Prime Factor Algorithm to calculate the Fast Fourier Transform. The NPSD of the jet pumps pressure drop, of Unit 2 of the Laguna Verde Nuclear Power Plant, showed a noticeable change in jet pump 6 during 2003, considering the period from the startup test to operation during 2003. This abnormal condition was due to that the jet pump throat was partially blocked. The noise analysis methodology is shown to be a useful tool for malfunction detection, and could be applied to create a data bank for monitoring the dynamic behavior of BWR jet pumps.


1999 ◽  
Vol 121 (2) ◽  
pp. 365-372 ◽  
Author(s):  
D. Wang ◽  
P. W. Wypych

A mathematical model to predict the air-solids performance of central air-jet pumps has been developed based on the fundamentals of fluid and particle mechanics. The influence of throat entry configuration on performance has been incorporated into the analytical model by introducing a throat entry function and suction area ratio. Nondimensional parameters to represent air-solids jet pump performance has been defined and used in the analytical procedure. The performance predictions obtained by this model show good agreement with experimental results.


1987 ◽  
Vol 60 (2) ◽  
pp. 337-360 ◽  
Author(s):  
James L. White ◽  
Yeh Wang ◽  
Avraam I. Isayev ◽  
Nobuyuki Nakajima ◽  
Frederick C. Weissert ◽  
...  

Abstract This paper marks a first effort to develop a fundamental basis for die flow analysis and design for rubber compounds. We have accomplished a modelling of the shear viscosity function and its application to one- and two-dimensional shearing in die cross sections. There are major limitations in what we have done, much of which is apparent even in the early work of Mooney. In particular, we have not considered (i) slip phenomena on die walls, (ii) die entrance and exit pressure losses associated with converging and diverging dies, nor (iii) extrudate swell. We have an active research in our laboratories investigating these problems. In the future, we are seeking to generalize the procedures described in this paper to more complex die designs. Inclusion of entrance and exit effects and rigorous analysis of coathanger dies requires the handling of elongational flow contributions, a still unsolved problem.


Sign in / Sign up

Export Citation Format

Share Document