scholarly journals Formation and evolution of Tar Balls from Northwestern US wildfires

Author(s):  
Arthur J. Sedlacek III ◽  
Peter R. Buseck ◽  
Kouji Adachi ◽  
Timothy B. Onasch ◽  
Stephen R. Springston ◽  
...  

Abstract. Biomass burning is a major source of light-absorbing black and brown carbonaceous particles. Brown carbon is a poorly characterized mixture that includes tar balls (TBs), a type of carbonaceous particle apparently unique to biomass burning. Here we describe the first atmospheric observations of the formation and evolution of TBs from forest fires. Aerosol particles were collected on TEM grids during aircraft transects at various downwind distances from the Colockum Tarp wildland fire. TB mass fractions, derived from TEM and in-situ measurements, increased from

2018 ◽  
Vol 18 (15) ◽  
pp. 11289-11301 ◽  
Author(s):  
Arthur J. Sedlacek III ◽  
Peter R. Buseck ◽  
Kouji Adachi ◽  
Timothy B. Onasch ◽  
Stephen R. Springston ◽  
...  

Abstract. Biomass burning is a major source of light-absorbing black and brown carbonaceous particles. Tar balls (TBs) are a type of brown carbonaceous particle apparently unique to biomass burning. Here we describe the first atmospheric observations of the formation and evolution of TBs from forest fires. Aerosol particles were collected on transmission electron microscopy (TEM) grids during aircraft transects at various downwind distances from the Colockum Tarps wildland fire. TB mass fractions, derived from TEM and in situ measurements, increased from <1 % near the fire to 31–45 % downwind, with little change in TB diameter. Given the observed evolution of TBs, it is recommended that these particles be labeled as processed primary particles, thereby distinguishing TB formation–evolution from secondary organic aerosols. Single-scattering albedo determined from scattering and absorption measurements increased slightly with downwind distance. Similar TEM and single-scattering albedo results were observed sampling multiple wildfires. Mie calculations are consistent with weak light absorbance by TBs (i.e., m similar to the literature values 1.56−0.02i or 1.80−0.007i) but not consistent with absorption 1 order of magnitude stronger observed in different settings. The field-derived TB mass fractions reported here indicate that this particle type should be accounted for in biomass burning emission inventories.


2016 ◽  
Author(s):  
A. Hoffer ◽  
A. Tóth ◽  
M. Pósfai ◽  
C. E. Chung ◽  
A. Gelencsér

Abstract. Black carbon aerosols have been conventionally assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that contrary to the conventional belief tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near infrared radiation significantly. Tar balls were produced in a laboratory experiment and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure aerosol absorption in the field. We find that the absorption coefficient of tar balls at 880 nm exceeds 10 % of that at 470 nm. This substantial absorption of red and infrared light is also evident from a relatively low Ångström coefficient (and a significant mass absorption coefficient) of tar balls between 470 and 950 nm. Retrievals of aerosol column optical properties from a global network of surface stations over vast tropical areas dominated by biomass burning suggest that tar balls are the predominant light-absorbing species of organic aerosols over acetone/methanol-soluble BrC or HULIS. Our results also infer that the role of BC (including Diesel soot) in global climate forcing has likely been overestimated at the expense of brown carbon (BrC) from biomass burning.


2020 ◽  
Author(s):  
Gaurav Mahamuni ◽  
Jiayang He ◽  
Jay Rutherford ◽  
Byron Ockerman ◽  
Edmund Seto ◽  
...  

<p>Exposure to combustion generated aerosols such as PM from residential woodburning, forest fires, cigarette smoke, and traffic emission have been linked to adverse health outcomes. It is important to assess the chemical composition of PM to examine personal exposure. Excitation-emission matrix (EEM) spectroscopy has been shown as a sensitive and cost-effective technique for evaluation of combustion PM composition and as a source apportionment tool. However, EEM measurements are hindered by a solvent extraction step and a need for benchtop instrumentation. Here, we present a methodology that eliminates this labor-intensive sample preparation and allows to automate and miniaturize the detection platform. A miniature electrostatic collector deposits PM sample onto transparent polydimethylsiloxane (PDMS) coated substrate, where PAH components are extracted into solid-phase (SP) solvent and analyzed using EEM spectroscopy in-situ. We evaluated external and internal excitation schemes to optimized signal to noise ratio. Analysis of woodsmoke and cigarette smoke samples showed good agreement with liquid extraction EEM spectra. Internal excitation is hindered by fluorescent interference from PDMS at λ<250nm. The external excitation EEM spectra are dependent on the incident angle; ranges of 30-40⁰ and 55-65⁰ showed the best results. The proposed SP-EEM technique can be used for development of miniaturized sensors for chemical analysis of combustion generated PM. </p>


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 294
Author(s):  
Nicholas F. McCarthy ◽  
Ali Tohidi ◽  
Yawar Aziz ◽  
Matt Dennie ◽  
Mario Miguel Valero ◽  
...  

Scarcity in wildland fire progression data as well as considerable uncertainties in forecasts demand improved methods to monitor fire spread in real time. However, there exists at present no scalable solution to acquire consistent information about active forest fires that is both spatially and temporally explicit. To overcome this limitation, we propose a statistical downscaling scheme based on deep learning that leverages multi-source Remote Sensing (RS) data. Our system relies on a U-Net Convolutional Neural Network (CNN) to downscale Geostationary (GEO) satellite multispectral imagery and continuously monitor active fire progression with a spatial resolution similar to Low Earth Orbit (LEO) sensors. In order to achieve this, the model trains on LEO RS products, land use information, vegetation properties, and terrain data. The practical implementation has been optimized to use cloud compute clusters, software containers and multi-step parallel pipelines in order to facilitate real time operational deployment. The performance of the model was validated in five wildfires selected from among the most destructive that occurred in California in 2017 and 2018. These results demonstrate the effectiveness of the proposed methodology in monitoring fire progression with high spatiotemporal resolution, which can be instrumental for decision support during the first hours of wildfires that may quickly become large and dangerous. Additionally, the proposed methodology can be leveraged to collect detailed quantitative data about real-scale wildfire behaviour, thus supporting the development and validation of fire spread models.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 965
Author(s):  
Zoé Perrin ◽  
Nathalie Carrasco ◽  
Audrey Chatain ◽  
Lora Jovanovic ◽  
Ludovic Vettier ◽  
...  

Titan’s haze is strongly suspected to be an HCN-derived polymer, but despite the first in situ measurements by the ESA-Huygens space probe, its chemical composition and formation process remain largely unknown. To investigate this question, we simulated the atmospheric haze formation process, experimentally. We synthesized analogues of Titan’s haze, named Titan tholins, in an irradiated N2–CH4 gas mixture, mimicking Titan’s upper atmosphere chemistry. HCN was monitored in situ in the gas phase simultaneously with the formation and evolution of the haze particles. We show that HCN is produced as long as the particles are absent, and is then progressively consumed when the particles appear and grow. This work highlights HCN as an effective precursor of Titan’s haze and confirms the HCN-derived polymer nature of the haze.


2019 ◽  
Vol 19 (6) ◽  
pp. 3557-3578 ◽  
Author(s):  
Martin Osborne ◽  
Florent F. Malavelle ◽  
Mariana Adam ◽  
Joelle Buxmann ◽  
Jaqueline Sugier ◽  
...  

Abstract. On 15–16 October 2017, ex-hurricane Ophelia passed to the west of the British Isles, bringing dust from the Sahara and smoke from Portuguese forest fires that was observable to the naked eye and reported in the UK's national press. We report here detailed observations of this event using the UK operational lidar and sun-photometer network, established for the early detection of aviation hazards, including volcanic ash. We also use ECMWF ERA5 wind field data and MODIS imagery to examine the aerosol transport. The observations, taken continuously over a period of 30 h, show a complex picture, dominated by several different aerosol layers at different times and clearly correlated with the passage of different air masses associated with the intense cyclonic system. A similar evolution was observed at several sites, with a time delay between them explained by their different location with respect to the storm and associated meteorological features. The event commenced with a shallow dust layer at 1–2 km in altitude and culminated in a deep and complex structure that lasted ∼12 h at each site over the UK, correlated with the storm's warm sector. For most of the time, the aerosol detected was dominated by mineral dust mixtures, as highlighted by depolarisation measurements, but an intense biomass burning aerosol (BBA) layer was observed towards the end of the event, lasting around 3 h at each site. The aerosol optical depth at 355 nm (AOD355) during the whole event ranged from 0.2 to 2.9, with the larger AOD correlated to the intense BBA layer. Such a large AOD is unprecedented in the UK according to AERONET records for the last 20 years. The Raman lidars permitted the measurement of the aerosol extinction coefficient at 355 nm, the particle linear depolarisation ratio (PLDR), and the lidar ratio (LR) and made the separation of the dust (depolarising) aerosol from other aerosol types possible. A specific extinction has also been computed to provide an estimate of the atmospheric concentration of both aerosol types separately, which peaked at 420±200 µg m−3 for the dust and 558±232 µg m−3 for the biomass burning aerosols. Back trajectories computed using the Numerical Atmospheric-dispersion Modelling Environment (NAME) were used to identify the sources and strengthen the conclusions drawn from the observations. The UK network represents a significant expansion of the observing capability in northern Europe, with instruments evenly distributed across Great Britain, from Camborne in Cornwall to Lerwick in the Shetland Islands, and this study represents the first attempt to demonstrate its capability and validate the methods in use. Its ultimate purpose will be the detection and quantification of volcanic plumes, but the present study clearly demonstrates the advanced capabilities of the network.


2016 ◽  
Vol 16 (18) ◽  
pp. 12329-12345 ◽  
Author(s):  
Jessie M. Creamean ◽  
Paul J. Neiman ◽  
Timothy Coleman ◽  
Christoph J. Senff ◽  
Guillaume Kirgis ◽  
...  

Abstract. Biomass burning plumes containing aerosols from forest fires can be transported long distances, which can ultimately impact climate and air quality in regions far from the source. Interestingly, these fires can inject aerosols other than smoke into the atmosphere, which very few studies have evidenced. Here, we demonstrate a set of case studies of long-range transport of mineral dust aerosols in addition to smoke from numerous fires (including predominantly forest fires and a few grass/shrub fires) in the Pacific Northwest to Colorado, US. These aerosols were detected in Boulder, Colorado, along the Front Range using beta-ray attenuation and energy-dispersive X-ray fluorescence spectroscopy, and corroborated with satellite-borne lidar observations of smoke and dust. Further, we examined the transport pathways of these aerosols using air mass trajectory analysis and regional- and synoptic-scale meteorological dynamics. Three separate events with poor air quality and increased mass concentrations of metals from biomass burning (S and K) and minerals (Al, Si, Ca, Fe, and Ti) occurred due to the introduction of smoke and dust from regional- and synoptic-scale winds. Cleaner time periods with good air quality and lesser concentrations of biomass burning and mineral metals between the haze events were due to the advection of smoke and dust away from the region. Dust and smoke present in biomass burning haze can have diverse impacts on visibility, health, cloud formation, and surface radiation. Thus, it is important to understand how aerosol populations can be influenced by long-range-transported aerosols, particularly those emitted from large source contributors such as wildfires.


2018 ◽  
Vol 176 ◽  
pp. 08012
Author(s):  
Rei Kudo ◽  
Tomoaki Nishizawa ◽  
Akiko Higurashi ◽  
Eiji Oikawa

For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.


2020 ◽  
Author(s):  
Francisco J. Pérez-Invernón ◽  
Heidi Huntrieser ◽  
Sergio Soler Lopez ◽  
Francisco J. Gordillo-Vázquez ◽  
Javier Navarro-Gonzalez ◽  
...  

&lt;p&gt;About 5% of the wildfires in the Mediterranean basin are produced by lightning [1]. Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. The occurrence of lightning-caused fires is closely related with intense drought periods and high temperatures [2]. Therefore, drier conditions and higher temperatures in a changing climate are expected to lead to a future increase in lightning-ignited fires occurrence. The development of a lightning-ignited fire parameterization for Earth system models arises as a necessary tool to predict the future occurrence of these extreme events and to study their impact on atmospheric chemistry.&lt;/p&gt;&lt;p&gt;Long Continuing Current lightning (LCC-lightning), preferable taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. This was originally proposed by McEachron and Itagenguth in 1942 [3] working with laboratory sparks, which suggested that ignition by natural lightning is usually caused by a discharge having an unusual long-continuing current phase. Later in 1967 this hypothesis was confirmed by Fuquay &lt;em&gt;et al.&lt;/em&gt; [4].&lt;/p&gt;&lt;p&gt;In this work, we analyse three fire databases of lightning-ignited fires in Spain, Portugal and Southern France between 2009 and 2015. Furthermore lightning measurements from the World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN), and land and atmospheric variables from the new ERA-5 reanalysis are combined to investigate the electrical characteristics and environmental conditions of the fires. This preliminary data analysis will be useful to set new relationships between the characteristics of thunderstorms and the initiation of wildfires. It is the first step towards the development of a detailed lightning-ignited fire parameterization for the atmospheric chemistry-climate model EMAC.&lt;/p&gt;&lt;p&gt;[1] V&amp;#225;zquez, A., and Moreno, J. M. (1998). Patterns of lightning-, and people-caused fires in peninsular Spain. International Journal of Wildland Fire, 8(2), 103-115.&lt;/p&gt;&lt;p&gt;[2] Pineda, N., and Rigo, T. (2017). The rainfall factor in lightning-ignited wildfires in Catalonia. Agricultural and Forest Meteorology, 239, 249-263.&lt;/p&gt;&lt;p&gt;[3] McEachron, K. B., and Itagenguth, J. It (1942), Effect of lightning on thin metal surfaces, AIEE Trans., 61, 559-564, 1942.&lt;/p&gt;&lt;p&gt;[4] Fuquay, D. M., Baughman R. G, Taylor, A. R. and Hawe, R. G. (1967). Characteristics of seven lightning discharges that caused forest fires. Journal of Geophysical Research, 72 (24).&lt;/p&gt;


2017 ◽  
Vol 86 (1) ◽  
pp. 22-23
Author(s):  
Josiah Marquis ◽  
Meriem Benlamri ◽  
Elizabeth Dent ◽  
Tharmitha Suyeshkumar

Almost half of the Canadian landscape is made up of forests, but the amount of forest surface area burned every year has been growing steadily since 1960.1 This can be problematic due to the effects that forest fires have not only on the local environment but also on the globe as a whole. A forest fire or vegetation fire is defined as any open fire of vegetation such as savannah, forest, agriculture, or peat that is initiated by humans or nature.2 Vegetation fires contribute heavily to air pollution and climate change and are in turn exacerbated by them as well. Air pollution increases due to emissions from these fires, which contain 90-95% carbon dioxide and carbon monoxide as well as methane and other volatile compounds.2 Emissions from forest fires also contribute to global greenhouse gases and aerosol particles (biomass burning organic aerosols),2 leading to indirect and direct consequences to human health. In contrast to biomass burning for household heating and cooking, catastrophic events of forest fires and sweeping grassland fires result in unique exposures and health consequences. In this case report, the relationship between environmental hazardous air pollutants and the potential physiological and psychological health effects associated with the forest fire that affected Fort McMurray, AB in May 2016 are considered.


Sign in / Sign up

Export Citation Format

Share Document