Pore connectivity across scales and resolutions

Author(s):  
Maik Lucas ◽  
Doris Vetterlein ◽  
Hans-Jörg Vogel ◽  
Steffen Schlüter

<p>An important parameter to quantify pore structure and link it to soil functions is connectivity. When quantifying connectivity with X-ray microtomography (X-ray-µCT), one of the major drawbacks is that high resolution can only be achieved in small samples. In these samples, the small pores can be described, but the connectivity of larger pores cannot be quantified reasonably.</p><p>Here we explore changes in pore connectivity with changing sample size covering a range of analyzed pore diameters of more than three orders of magnitude. Soil columns with a diameter of 10 cm were taken in two different depths (0 - 20 cm and 40 - 60 cm) at different sites of an agricultural chronosequence ranging in age from 0 to 24 years. X-ray CT was used for scanning the original columns as well as undisturbed subsamples of 3 and 0.7 cm diameter. This enabled us to detect characteristic traces in certain connectivity metrics on the chronosequence, caused by different pore types and thus different processes. In detail, we determined the connection probability of two random points within the pore system, i.e. the Γ-indicator and the Euler number, χ as a function of minimum pore diameter.</p><p>Our results revealed that scale artifacts in the connectivity functions overlap with characteristic signatures of certain pore types. For the very first time a new method for a joint-Γ-curve was developed that merges information from three samples sizes, as the Γ-indicator gives highly biased information in small samples. In contrast, χ does not require such a scale fusion and is helpful to define characteristic size ranges for pore types. Overall, findings suggest a joint evaluation of both connectivity metrics to identify the contribution of different pore types to the total pore connectivity with Γ and to disentangle different pore types with χ.</p><p>For the samples of the chronosequence such an evaluation revealed that biopores mainly connect pores of diameters between 0.1 and 0.5 mm. However, this was not necessarily coupled with increasing porosity. Tillage, conversely, lead to an increase in porosity due to a shift of pores of diameter >0.05 mm towards pores of diameter >0.20 mm and therefore increased connectivity of pores >0.20 mm.</p><p>The current study is part of the DFG-Project Soil Structure (AOBJ: 628683). </p>

Author(s):  
A. M. Afanas'ev ◽  
R. M. Imamov ◽  
E. Kh. Mukhamedzhanov ◽  
A. N. Chuzo

A simple relation has been established between the Fourier component of the probability density P(z) of photoelectron emission from different depths of a crystal and the angular dependence of the emission of photoelectrons formed in inclined X-ray Laue diffraction, which for the first time permitted the use of a direct method for the reconstruction of the P(z) function. Accurate measurements of the angular dependence of photoelectron emission were carried out on a silicon single crystal with diffraction of Cu Kα radiation for different energy ranges. Photoelectrons were recorded by a proportional gas counter specially designed for the energy analysis of photoelectrons under inclined Laue diffraction conditions. The laws predicted by the theory have been fully confirmed, and the corresponding P(z) functions have been obtained.


2011 ◽  
Vol 189-193 ◽  
pp. 653-657
Author(s):  
Su Yong Huang ◽  
Kai Fu Li

Small samples of Chinese fir/TiO2 composites were prepared by sol-gel method and MWLPD (microwave assistant liquid phase deposition) method for the first time. The surface of samples were analyzed by Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the microstructure and Ti distribution of samples was observed by scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). Results show that Ti is not only distributed on the composites surface, but also go into the inside wood. The composites surfaces are covered with pure TiO2. Activities of composites are increased considerably for the oxygen content and number of oxygen containing groups on there surfaces are increased considerably.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lingjie Yu ◽  
Keyu Liu ◽  
Ming Fan ◽  
Zhejun Pan

Pore connectivity is crucial for shale gas production. However, the three-dimensional (3D) characteristics and distribution of pore networks and, more fundamentally, the underlying role of different pore types on pore connectivity in shales are inadequately understood. By comparing the 3D pore connectivity derived from direct microstructural imaging of pores filled with Wood’s metal at a pressure corresponding to the finest accessible pore throat in the resolution ranges that may be achieved by X-ray micro-CT and SEM, it is possible to evaluate pore connectivity of different types of shales. The pore connectivity of three shales including a mixed mudstone, siliceous shale, and argillaceous shale from the Silurian Longmaxi Formations is investigated via combined broad ion beam (BIB) polishing, and SEM and X-ray micro-CT imaging after Wood’s metal injection at a pressure up to 380 MPa. The three shales show significant differences in pore connectivity. The mixed mudstone shows excellent pore connectivity in the matrix; the siliceous shale shows an overall poor connectivity with only a small amount of OM (organic matter) pores immediately adjacent to microfractures displaying interconnectivity, while the pores in the argillaceous shale, dominated by plate-like clay pores, are largely not interconnected.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


2006 ◽  
Vol 71 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Martin Pošta ◽  
Jan Čermák ◽  
Pavel Vojtíšek ◽  
Ivana Císařová

The first rhodium complexes of diphosphinoazines [{RhCl(1,2-η:5,6-η-CH=CHCH2CH2CH=CHCH2CH2)}2 {μ-R2PCH2C(But)=NN=C(But)CH2PR2] (R = Ph, Cy, Pri) were prepared by cleavage of the bridge in chloro(cycloocta-1,5-diene)rhodium(I) dimer, the analogous iridium(I) complexes were also prepared for the first time. The X-ray structures of isostructural rhodium and iridium complexes with bis(dicyclohexylphosphino)pinacoloneazine were determined. Diphosphinoazine ligands in the complexes remained in (Z,Z) configuration bridging two RhCl(C8H12) units.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Carlos Alberto Ríos-Reyes ◽  
German Alfonso Reyes-Mendoza ◽  
José Antonio Henao-Martínez ◽  
Craig Williams ◽  
Alan Dyer

This study reports for the first time the geologic occurrence of natural zeolite A and associated minerals in mudstones from the Cretaceous Paja Formation in the urban area of the municipality of Vélez (Santander), Colombia. These rocks are mainly composed of quartz, muscovite, pyrophyllite, kaolinite and chlorite group minerals, framboidal and cubic pyrite, as well as marcasite, with minor feldspar, sulphates, and phosphates. Total organic carbon (TOC), total sulfur (TS), and millimeter fragments of algae are high, whereas few centimeters and not biodiverse small ammonite fossils, and other allochemical components are subordinated. Na–A zeolite and associated mineral phases as sodalite occur just beside the interparticle micropores (honeycomb from framboidal, cube molds, and amorphous cavities). It is facilitated by petrophysical properties alterations, due to processes of high diagenesis, temperatures up to 80–100 °C, with weathering contributions, which increase the porosity and permeability, as well as the transmissivity (fluid flow), allowing the geochemistry remobilization and/or recrystallization of pre-existing silica, muscovite, kaolinite minerals group, salts, carbonates, oxides and peroxides. X-ray diffraction analyses reveal the mineral composition of the mudstones and scanning electron micrographs show the typical cubic morphology of Na–A zeolite of approximately 0.45 mμ in particle size. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → sodalite → Na–A zeolite. A literature review shows that this is an unusual example of the occurrence of natural zeolites in sedimentary marine rocks recognized around the world.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2623
Author(s):  
Monika Wójcik-Bania ◽  
Jakub Matusik

Polymer–clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R’NR]+, where R = C12, C14, C16, and R’ = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers’ exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.


Molbank ◽  
10.3390/m1200 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1200
Author(s):  
R. Alan Aitken ◽  
Dheirya K. Sonecha ◽  
Alexandra M. Z. Slawin

The X-ray structure of the title compound has been determined for the first time. Data on its 1H–13C-NMR coupling constants and 15N-NMR spectrum are also given.


Author(s):  
Tianlei Ma ◽  
Marek Nikiel ◽  
Andrew G. Thomas ◽  
Mohamed Missous ◽  
David J. Lewis

AbstractIn this report, we prepared transparent and conducting undoped and molybdenum-doped tin oxide (Mo–SnO2) thin films by aerosol-assisted chemical vapour deposition (AACVD). The relationship between the precursor concentration in the feed and in the resulting films was studied by energy-dispersive X-ray spectroscopy, suggesting that the efficiency of doping is quantitative and that this method could potentially impart exquisite control over dopant levels. All SnO2 films were in tetragonal structure as confirmed by powder X-ray diffraction measurements. X-ray photoelectron spectroscopy characterisation indicated for the first time that Mo ions were in mixed valence states of Mo(VI) and Mo(V) on the surface. Incorporation of Mo6+ resulted in the lowest resistivity of $$7.3 \times 10^{{ - 3}} \Omega \,{\text{cm}}$$ 7.3 × 10 - 3 Ω cm , compared to pure SnO2 films with resistivities of $$4.3\left( 0 \right) \times 10^{{ - 2}} \Omega \,{\text{cm}}$$ 4.3 0 × 10 - 2 Ω cm . Meanwhile, a high transmittance of 83% in the visible light range was also acquired. This work presents a comprehensive investigation into impact of Mo doping on SnO2 films synthesised by AACVD for the first time and establishes the potential for scalable deposition of SnO2:Mo thin films in TCO manufacturing. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document