Correlating surface water flood damages in three Indonesia cities

Author(s):  
Matthew Farnham ◽  
Vivian Camacho-Suarez ◽  
Alistair Milne ◽  
John Hillier ◽  
Dapeng Yu ◽  
...  

<p>Despite a high growth rate of over 5%, the insurance penetration rate in Indonesia is low, at roughly 2.77 percent and is one of the least developed insurance market among ASEAN economies. A primary explanation for the lack of motivation for taking up insurance is due to the lack of understanding of the multitude of risks from natural hazards the Indonesian market faces, principally of flooding. The purpose of this research is to assess the flood correlation between three of the major cities (Jakarta, Semarang, and Solo) on the island of Java. These highly populated and financial centres of Indonesia are most prone to the rainfall extremes during the Monsoon Season (November – March), many of which causes flooding. All the historical rainfall events were extracted from ECMWF’s ERA-5 hourly rainfall dataset (1979 – 2018). The top 10 events for each city were selected based on peak rainfall intensity. For the selected events in a city, rainfall records of the same period were extracted for the other two cities. This results in 30 simulations per city. Using a 2D hydraulic modelling tool (FloodMap), surface water flood footprints were generated for the events. In the absence of depth-damage curves, the number of buildings flooded under each event were used as an approximation to building damages. Damage to buildings due to surface water flooding in Solo and Semarang were found to be most correlated, with a significant number of buildings flooded in both cities in 15 out of the 20 paired events. Solo and Jakarta show some correlation (7 out of 20) whilst flooding in Semarang and Jakarta are least correlated (4 out of 20). This study is an initial analysis relevant to the modelling of catastrophes in a relatively data sparse environment, providing an approximation of the correlation of flooding between three Indonesian cities. Further studies are required to develop pragmatic approaches to complement catastrophe modelling that integrate the spatial correlation between flood damages in cities.</p>

2019 ◽  
Vol 118 (8) ◽  
pp. 236-240
Author(s):  
Dr.R. Murugesan ◽  
M. Leelavathi ◽  
Dr. K. Ravindran

towards jumping from the category of developing economy to developed economy there is one big factor that stops and poses a hindrance in its path of advancement and that obstacle is termed as Poverty. The Indian economic policy focuses on a high growth rate along with a equal participation of the poor so that they avail the opportunities available in the market economy. And in order to ensure the participation of the poor it has become important for the country to create a platform where the poor can easily access the various financial products. Microfinance is one such strategy for inclusive growth. Microfinance can change the life of the poor though not completely but a reasonable change can be ensured. In different phases of life women play a crucial role despite the discrimination that is faced by them. But equality can be endowed to women by enhancing the entrepreneurial skills in them. This is possible through Self Help Groups (SHGs). In India women produce around 30% of the total food consumed but she gets only 10% of the property or wealth of the country. Development of women is inevitable for the development and growth of any economy. SHGs happen to be a positive step in this direction. Along with these mediums there should be a cheap and easy source of credit for them and Microfinance fulfills the requirement. This study aims to find the role of this strong medium of Microfinance in the advancement of SHGs in India


2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


2013 ◽  
Vol 687 ◽  
pp. 255-261 ◽  
Author(s):  
Sandra Cunha ◽  
José Barroso Aguiar ◽  
Victor Ferreira ◽  
António Tadeu

Increasingly in a society with a high growth rate and standards of comfort, the need to minimize the currently high energy consumption by taking advantage of renewable energy sources arises. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing for an increase in the level of thermal comfort and reduction of the use of heating, ventilation and air conditioning (HVAC) equipment, using only the energy supplied by the sun. However, the incorporation of PCM in mortars modifies some of its characteristics. Therefore, the main objective of this study was the characterization of mortars doped with two different phase change materials. Specific properties of different PCM, such as particle size, shape and enthalpy were studied, as well as the properties of the fresh and hardened state of these mortars. Nine different compositions were developed which were initially doped with microcapsules of PCM A and subsequently doped with microcapsules of PCM B. It was possible to observe that the incorporation of phase change materials in mortars causes differences in properties such as compressive strength, flexural strength and shrinkage. After the study of the behaviour of these mortars with the incorporation of two different phase change materials, it was possible to select the composition with a better compromise between its aesthetic appearance, physical and mechanical characteristics.


1997 ◽  
Vol 471 ◽  
Author(s):  
D. Endisch ◽  
K. Barth ◽  
J. Lau ◽  
G. Peterson ◽  
A. E. Kaloyeros ◽  
...  

ABSTRACTSrS:Ce is an important material for full color electroluminescent (EL) flat panel displays. Using a combination of SrS:Ce/ZnS:Mn and appropriate color filters high quality full color displays have been demonstrated [1]. Major issues for commercially viable process integration of SrS:Ce are the combination of high luminance, high growth rate, and process temperatures below 600°C for compatibility with low cost glass substrates. This work describes the process development and optimization of metal-organic chemical vapor deposition (MOCVD) of SrS:Ce. MOCVD is a promising candidate for deposition of SrS:Ce because it can provide the required growth rates and allows control of crystal structure and stoichiometry. Growth of SrS:Ce was performed in the temperature range from 400°C to 530°C using Sr(tmhd)2, Ce(tmhd)4, and H2S as precursors. The structure of the SrS:Ce was found to be strongly dependent on the H2S flow. A brightness of 15 fL and an efficiency of 0.22 lm/W has been achieved (40 V above threshold voltage, 60 Hz AC). Film analysis included Rutherford backscattering (RBS), X-ray diffraction (XRD), atomic force microscopy (AFM), and EL measurements. Results on the correlation between process parameters, film structure, grain size and EL performance will be presented.


2008 ◽  
Vol 600-603 ◽  
pp. 115-118 ◽  
Author(s):  
Henrik Pedersen ◽  
Stefano Leone ◽  
Anne Henry ◽  
Franziska Christine Beyer ◽  
Vanya Darakchieva ◽  
...  

The chlorinated precursor methyltrichlorosilane (MTS), CH3SiCl3, has been used to grow epitaxial layers of 4H-SiC in a hot wall CVD reactor, with growth rates as high as 170 µm/h at 1600°C. Since MTS contains both silicon and carbon, with the C/Si ratio 1, MTS was used both as single precursor and mixed with silane or ethylene to study the effect of the C/Si and Cl/Si ratios on growth rate and doping of the epitaxial layers. When using only MTS as precursor, the growth rate showed a linear dependence on the MTS molar fraction in the reactor up to about 100 µm/h. The growth rate dropped for C/Si < 1 but was constant for C/Si > 1. Further, the growth rate decreased with lower Cl/Si ratio.


Sign in / Sign up

Export Citation Format

Share Document