Tree growth and drought impact the dynamics of C allocation and change the coupling between photosynthesis and respiration in stem and soil

Author(s):  
Yu Tang ◽  
Pauliina Schiestl-Aalto ◽  
Kira Ryhti ◽  
Liisa Kulmala ◽  
Elina Sahlstedt ◽  
...  

<p>In-depth knowledge about carbon (C) flows within trees and from the trees to forest ecosystem via respiration is essential for accurate modeling of tree growth and C balance. However, significant gaps still exist in our understanding about how trees allocate C for growth and respiration of different tree organs, which makes it difficult to predict the response of forest growth to climate change. A powerful tool to study C allocation within trees is stable C isotope ratio (the ratio of <sup>13</sup>C to <sup>12</sup>C relative to a reference, noted as δ<sup>13</sup>C), as this signal is passed from C sources to C sinks with isotopic fractionation along the pathway. In this study, we monitored the δ<sup>13</sup>C signal of CO<sub>2</sub> fluxes of shoot (A<sub>canopy</sub>), stem (R<sub>stem</sub>) and soil (R<sub>soil</sub>) in a Scots pine (Pinus sylvestris L.) dominated boreal forest in southern Finland for summer 2018, which included a month-long dry period. We also traced the growth of current-year shoots, needles, stem, and fine roots (fibrous and pioneer roots) and the concentrations and δ<sup>13</sup>C of putative substrates (sugars and starch) in phloem and roots of Scots pine over the growing season. We calculated the correlations between substrate concentrations and respiration fluxes, as well as the correlations between δ<sup>13</sup>C of A<sub>canopy</sub> and δ<sup>13</sup>C of R<sub>soil</sub> or δ<sup>13</sup>C of R<sub>stem</sub> with varying time lags from 3 d to 14 d for different tree organ growth periods and the dry period. We found tight couplings between photosynthesis and respiration, when newly assimilated sugars were allocated to stem or roots for growth or for drought response. These couplings include: 1) a synchrony between fibrous root growth and the concentrations of bulk sugars and starch in roots, associated with increases in R<sub>soil</sub> under high root substrate concentrations; 2) promoted nighttime R<sub>stem</sub> under high substrate supply to stem, which is seen as increased phloem glucose to sucrose ratio; 3) shorter time lags between δ<sup>13</sup>C of A<sub>canopy</sub> and δ<sup>13</sup>C of R<sub>stem</sub> under higher stem growth demands; 4) shorter time lags between δ<sup>13</sup>C of A<sub>canopy</sub> and δ<sup>13</sup>C of R<sub>soil</sub> under drought stress than with no water stress. The time lags between δ<sup>13</sup>C of A<sub>canopy</sub> and δ<sup>13</sup>C of R<sub>soil</sub> or δ<sup>13</sup>C of R<sub>stem</sub> being not uniform further implies that tree C allocation patterns are dynamic over the growing season. In addition, the C allocation to stem and roots occurred after full expansion of current-year shoots or needles, reflecting a whole tree C allocation strategy for growth demands of different tree organs, which prioritizes the demands of source organs. We suggest that the dynamics of C allocation in response to tree organ growth and drought stress should be considered in whole tree C allocation models for projecting forest growth under climate change.</p>

2021 ◽  
Author(s):  
Pengfei Zheng ◽  
Dandan Wang ◽  
Xinxiao Yu ◽  
Guodong Jia ◽  
Ziqiang Liu ◽  
...  

Abstract Background: Global climate change, which includes changes in precipitation, prolonged growing seasons, and drought stress caused by overall climate warming, is putting increased pressure on forest ecosystems globally. Understanding the impact of climate change on drought-prone forests is a key objective in assessing forest responses to climate change.Results: In this study, we assessed tree growth trends and changes in physiological activity under climate change based on patterns in tree rings and stable isotopes. Additionally, structural equation models were used to analyze the climate drivers influencing tree growth, with several key results. (1) The climate in the study area showed a trend of warming and drying, with the growth of tree section areas decreasing first and then increasing, while the water use efficiency showed a steady increase. (2) The effects of climate warming on tree growth in the study area have transitioned from negative to positive. The gradual advance of the growing season and the supply of snowmelt water in the early critical period of the growing season are the key factors underlying the reversal of the sensitivity of trees to climate. (3) Variation in water supply has led to different responses of tree growth to warming, and the growth response of Pinus tabuliformis to temperature rise was closely related to increased water availability.Conclusions: Our study indicates that warming is not the cause of forest decline, and instead, drought caused by warming is the main factor causing this change. If adequate water is available during critical periods of the growing season, boreal forests may be better able to withstand rising temperatures and even exhibit increased growth during periods of rising temperatures, forming stronger carbon sinks. However, in semi-arid regions, where water supply is limited, continued warming could lead to reduced forest growth and even death, which would dramatically reduce carbon sinks in arid ecosystems.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yuguang Yang ◽  
Chengyi Zhao ◽  
Ming Han ◽  
Yike Li ◽  
Ruihong Yang

The relationship between shrub vegetation and precipitation is one important component of desert vegetation responses to climate change, but it has not been understood completely because of its complexity and nonlinearity. In this study, we used MODIS NDVI data and precipitation data from 2004 to 2012 to evaluate the relationship between the shrub vegetation and precipitation within Gurbantunggut Desert, Central Asia. Correlation analysis was employed to explore the relationship between NDVI and precipitation within growing season, within cross growing season, and on interannual scale. The results showed that NDVI could be classified into three temporal changing patterns within growing season, and NDVI was significantly correlated with the precipitation integrated by time durations and time lags within growing season; NDVI was significantly correlated with precipitation in the early growing season, but this relationship was not so obvious in the middle or late growing season; and the NDVI variational patterns depended on mean annual precipitation and the distribution of precipitation throughout the year. Precipitation had significant influence on shrub vegetation within Gurbantunggut Desert. Our findings provide basic knowledge for the relationship between precipitation and shrub vegetation, and it is helpful to understand how the desert vegetation responds to climate change in the future.


Author(s):  
Yun Zhang ◽  
Dingcai Yin ◽  
Mei Sun ◽  
Hang Wang ◽  
Kun Tian ◽  
...  

Improved understanding of climate-growth relationships of multi-species is fundamental to understand and predict response of forest growth to future climate change. Forests are mainly composed of conifers in Northwestern Yunnan Plateau, but variations of growth response to climates among the species are not well understood. To detect growth response of multiple species to climate change, we developed residual chronologies of four major conifers, i.e. Abies georgei, Picea likiangensis, Pinus densata and Larix potaninii at upper distributional limits in Shika Snow Mountain. By using dendroclimatology method, we analyzed correlations between the residual chronologies and climate variables. The results showed that conifer radial growth was influenced by both temperature and precipitation in Shika Snow Mountain. Previous November temperature, previous July mean maximum temperature (Tmax) and current June precipitation were the common climatic factors, which had consistent influences on radial growth of four species. Temperature in previous post growing season (September–October) and current growing season (June-August), and precipitation in previous August were the common climatic factors, which had divergent impacts on four species radial growth. Current May Tmax and early growing season (April-May) precipitation showed positive and negative influences on growth of P. likiangensis, respectively. Temperature in current post growing season positively affected growth of A. georgei. According to the prediction of climate models and our understanding in growth response of four species to climate variables, we may understand growth response to climate change at species level. It is difficult to predict future forest growth in the study area, since future climate change might cause both increases or decreases for four species and indirect effects of climate change on forest should be considered.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Yuan Gong ◽  
Christina L. Staudhammer ◽  
Susanne Wiesner ◽  
Gregory Starr ◽  
Yinlong Zhang

Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 416
Author(s):  
Barbara Jagosz ◽  
Stanisław Rolbiecki ◽  
Roman Rolbiecki ◽  
Ariel Łangowski ◽  
Hicran A. Sadan ◽  
...  

Climate warming increases the water needs of plants. The aim of this study was to estimate the water needs of grapevines in central Poland. Water needs were calculated using the crop coefficients method. Reference evapotranspiration was assessed by the Blaney–Criddle’s equation, modified for climate conditions in Poland. Crop coefficients were assumed according to the Doorenbos and Pruitt method. Water needs were calculated using the data from four meteorological stations. Rainfall deficit with the probability occurrence of normal years, medium dry years, and very dry years was determined by the Ostromęcki’s method. Water needs of grapevines during the average growing season were estimated at 438 mm. Upward time trend in the water needs both in the period of May–October and June–August was estimated. Temporal variability in the water needs was significant for all of the provinces. These changes were mainly impacted by a significant increasing tendency in mean air temperature and less by precipitation totals that did not show a clear changing tendency. Due to climate change, vineyards will require irrigation in the near future. The use of resource-efficient irrigation requires a precise estimate of the grapevines’ water needs. The study identified the water requirements for grapevines in central Poland.


2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.


2020 ◽  
Vol 13 (1) ◽  
pp. 222
Author(s):  
Miroslava Navrátilová ◽  
Markéta Beranová ◽  
Lucie Severová ◽  
Karel Šrédl ◽  
Roman Svoboda ◽  
...  

The aim of the presented article is to evaluate the impact of climate change on the sugar content of grapes in the Czech Republic during the period 2000–2019 through selected indicators on the basis of available secondary sources. Attention is focused on the developments in both the main wine-growing regions of Moravia and Bohemia. In the field of viticulture and wine-growing, the sugar content of grapes, as a basic parameter for the classification of wines, plays an important role. In the Czech Republic, the average sugar content of grapes has had a constantly growing trend. This trend is evident both in the wine-growing region of Bohemia and in the wine-growing region of Moravia. The impact of climate change, especially the gradual increase of average temperatures in the growing season, cannot be overlooked. It greatly affects, among other things, the sugar content of grapes. Calculations according to the Huglin Index and the Winkler Index were used to determine the relationship between climate and sugar content. These indexes summarize the course of temperatures during the entire vegetation period into a single numerical value. The results show that both indexes describe the effect of air temperature on sugar content in both wine regions of the Czech Republic in a statistically significant way. The Huglin Index shows a higher correlation rate. The Winkler Index proved to be less suitable for both areas. Alternatively, the Winkler Index calculated for a shorter growing season was tested, which showed a higher degree of correlation with sugar content, approaching the significance of the Huglin Index.


Sign in / Sign up

Export Citation Format

Share Document