scholarly journals A dynamical and thermodynamic mechanism to explain heavy snowfalls in current and future climate over Italy during cold spells

2020 ◽  
Author(s):  
Miriam D'Errico ◽  
Pascal Yiou ◽  
Cesare Nardini ◽  
Frank Lunkeit ◽  
Davide Faranda

Abstract. Cold and snowy spells are compound extreme events that have many societal impacts. Insight on their dynamics in climate change scenarios could help adaptation. We focus on winter cold and snowy spells over Italy, reconstructing 32 major events in the past 60 years from documentary sources. We show that despite warmer winter temperatures, some recent cold spells show abundant, sometimes exceptional snowfall amounts. In order to explain these compound phenomena, we perform ensembles of climate simulations in fixed emission scenarios changing boundary conditions (such sea–surface temperature, SST) and detect analogs of observed events. Our results show that the response of extreme cold weather events to climate change is not purely thermodynamic nor linked to the global average temperature increase, but crucially depends on the interactions of the atmospheric circulation at mid-latitudes with the thermodynamic feedback from warmer Mediterranean temperatures. This suggests how Mediterranean countries like Italy could observe large snowfall amounts even in warmer climates.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


2022 ◽  
Vol 964 (1) ◽  
pp. 012009
Author(s):  
Anh Ngoc Le ◽  
Thi Nguyen Vo ◽  
Van Hong Nguyen ◽  
Dang Mau Nguyen

Abstract This paper reviews the trends of climate and climate change scenarios in Ho Chi Minh City (HCMC). The linear regression method is used to determine the trend and variation of past climate (1980-2019) at Tan Son Hoa station. The annual average temperature tends to increase about 0.024°C/year (r2=0.54) and the rainfall tends to increase about 6.03 mm/year (r2=0.67). For temperature scenario, by 2030 the annual average temperature in the whole city will increase from 0.80- 0.81°C (RCP4.5) and 0.92-0.98°C (RCP8.5). By 2050, it will increase 1.23-1.33°C (RCP4.5) and 1.55-1.68°C (RCP8.5). By 2100, it will increase 1.75-1.88°C (RCP4.5) and 3.20-3.55°C (RCP8.5) compared to the base period. Regarding rainfall scenario, in 2030, the city-wide average rainfall will increase by 12-21% (RCP4.5) and by 12-17% (RCP8.5). By 2050, the average rainfall is likely to increase by 13-15% (RCP4.5) and 15-17% (RCP8.5). By 2100, the average rainfall is likely to increase by 18-22% (RCP4.5) and 20-21% (RCP8.5) compared to the base period.


Author(s):  
Mai Van Khiem

Abstract: This article presents the results of constructing climate change scenarios for Ho Chi Minh City (HCMC)based on the climate change scenarios of Vietnam published in 2016 by the Ministry of Natural Resources and Environment. Four high- resolution regional climate models include CCAM, clWRF, PRECIS, RegCM were used to downscale results of global climate models. The results show that the annual average temperature in HCMC tends to increase in the future compared to the baseline period 1986-2005, the increase depends on each RCP scenario. By the end of the century, the annual average temperature in HCMC had an increase of about 1.7÷1.9°C under the RCP4.5 scenario and 3.2÷3.6°C under RCP8.5.Meanwhile, annual rainfall in HCMC tends to increase in most periods under both of RCP scenarios. By the end of the century, annual rainfall in HCMC increases from 15% to 25% in the RCP4.5 scenario and 20-25% in the RCP8.5 scenario. Annual rainfall in coastal areas increases more than inland areas. Keyword: Climate change scenarios, Ho Chi Minh city


2014 ◽  
Vol 122 (4) ◽  
pp. 695-708 ◽  
Author(s):  
Stuart Bryce Capstick ◽  
Nicholas Frank Pidgeon

2016 ◽  
Vol 40 (5) ◽  
pp. 676-698 ◽  
Author(s):  
Alison L. Kay

Climate change is likely to have a significant effect on snow globally, with most effect where current winter temperatures are close to 0°C, including parts of upland Britain. There is evidence of decreasing trends in observations of snowfall and lying snow in Britain, and climate projections suggest a continuation of this trend. Although river flows in Britain are generally dominated by rainfall rather than snowmelt, some upland catchments have a significant snowmelt contribution. There is evidence of changes in observed and projected river flows in some catchments in Britain, linked to changes in snow, but it can be difficult to distinguish the effects of snow changes from those of other concurrent changes (climatic and non-climatic). Flow regime changes in catchments with widespread and prolonged winter snow cover usually involve increases in winter flow and decreases in spring flow, but the effect on catchments with more transient snow cover is less clear, as is the effect on high flows and water quality. Snow can also affect a number of other factors of socio-economic or environmental importance (e.g. transport and farming). There is some evidence that disruption due to snow may be less frequent in the future, but disruption from other types of weather events may increase. The impacts of snow tend to be worse in areas where events occur less frequently, due to unpreparedness, so there is a need to guard against complacency when it comes to future snow events in Britain, which can still be expected despite a likely reduction in frequency. Further modelling of the potential impacts of climate change, including modelling the influence of snow changes as well as other climatic and non-climatic changes, would aid adaptation and encourage mitigation.


2021 ◽  
Vol 2020 (20) ◽  
pp. 105-126
Author(s):  
Grygoriy Kolomytsev ◽  
◽  
Vasyl Prydatko-Dolin ◽  
◽  
◽  
...  

In Ukraine during 2008–2010, the first SDM matched the red squirrel (S. vulgaris) based on GLM-by-2050, and which covered Eastern Europe, was developed and used by the Land and Resource Management Center (ULRMC, Kyiv). Our new study reveals further development of the analysis by using relevant IPCC climate change scenarios. We took into account materials on S. vulgaris (and S. anomalus) distribution, as well as selected associated species, and the WorldClim with respective maps and current bioclimatic variables, and its projections for four relevant scenarios which combined SSPs & RCPs by 2100. The simulations of scenario SSP1 & RCP2.6 associated with an average temperature increase of 1.5 °C show that climate change could cause the loss of 12 % of suitable habitats of the species in Eastern Europe and 49 % in Ukraine. The simulations for SSP2 & RCP4.5 (with average temperature increase of 1.8 °C) demonstrates, respectively, a potential loss of 14 % and 57 % of suitable habitats. Simulations of SSP3 & RCP7.0 and SSP5 & RCP8.5 scenario (with average temperature increase of >> 2 °C) shows a loss of 30 % and 41 % of suitable habitats within Eastern Europe, and more than 90 % in Ukraine. Since each percent of such changes provokes enormous losses in ecosystems and biodiversity, we emphasize the current need for countries to aim and achieve the most ambitious climate change commitments to stabilize the increase of temperature, i.e. within 1.5 °C. Our comparison platform included also SDMs of some trees (oak, beech, spruce, pine, linden, and birch — Quercus robur, Fagus sylvatica, Picea abies, Pinus silvestris, Tilia cordata, Betula spp.), as well as SDM for the marten (Martes martes), for all of which we had already developed GLM-by-2050. Consequently, the new projections demonstrated that all habitats of the red squirrel and associated species are expected to shift mostly ‘to the north’ by 2100, and their localities in the Caucasus Mountain areas might be fragmented. Most likely, in nature, this complicated displacement revealed by the mentioned modelling will happen not in the form of direct migration of individuals ‘to the north’ directly, but through active synanthropization of the red squirrel. How durable and satisfactory this mechanism is for natural selection remains a mystery. The territories from which S. v. ukrainicus (Mygulin, 1928) historically originated and was described have changed significantly: the respective landscape ecosystem losses have reached up to 50 % and more. By 2100, significant habitat changes are likely to be also demonstrated by beech and birch. This research can be used by educators in teaching the history of science, applied ecology, nature conservation, and geoinformatics in biology. This research is dedicated to the Squirrel Year 2020.


2021 ◽  
Author(s):  
Kaoutar Mounir ◽  
Haykel Sellami ◽  
Imen El Ghoul ◽  
Abdessalam El Khanchoufi ◽  
Isabelle La Jeunesse

<p>Climate change scenarios predict water scarcity in Mediterranean region, particularly in areas that are exposed to weather related disasters (drought, flood...) (IPCC, 2014). These changes will most likely impact food security by altering the hydrological cycle and water availability. Considering that water is the economic engine of the Mediterranean countries that rely especially on agricultural production, several studies have been focused on understanding and quantifying the climate change effects on hydrological regime. In addition, the complexity of these impacts can be due also to a bad resources management that can hinder the countries’ development (Marin M., 2020). To study the hydrological function of the Ouergha watershed, the SWAT model was used to simulate daily runoff response for the period 1997-2017, including three years (1993-1997) for the warming-up of the model. Calibration and validation of the model were applied for the period 1997-2017 using the SUFI-2 algorithm, and the simulation estimates the water flows of the Ouergha basin in a monthly time step. The water balance indicates a predominance of evaporation losses accounting for 41% of total rainfall. Runoff represents 8% of precipitation while lateral flow is 7%. The remainder is distributed between the 5% deep aquifer recharge and percolation, in addition to the flow to the river which represents about 39%. The Swat model is considered as suitable tool for the management of water resources even though under changing climatic conditions, it’s prone to errors and uncertainties that needs to be assessed to make full benefits from this model challenging (Sellami H., 2014).To analyze these uncertainties a modelling approach based on the combination of hydrological model and a set of high resolution CORDEX climate models has been developed. The results are considered as a decision-making tool for local and regional actors.</p><p><strong>References :</strong></p><p>IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.</p><p>Marin M., C. L. (2020). Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environmental Research,. doi:https://doi.org/10.1016/j.envres.2020.109330.</p><p>Sellami H., L. J. (2014). France), Uncertainty analysis in model parameters regionalization: a case study involving the SWAT model in Mediterranean catchments (Southern. Hydrology and Earth System Sciences, 18, 2393–2413. doi:doi:10.5194/hess-18-2393-201.</p>


2017 ◽  
Vol 08 (01) ◽  
pp. 1750003 ◽  
Author(s):  
RYO TAKAHASHI

The relationship between climate change and violent behavior has been well documented in previous studies. Violence has two dimensions: outward violence (i.e., crime) and inward violence (i.e., suicide). To our knowledge, rigorous empirical studies have not been performed to investigate how climate change affects both criminal and suicidal behavior. This study aims to estimate the effects of climate change on crime and suicide in Japan by using prefecture-level monthly panel data on climate, crime, and suicide between 2009 and 2015. Even after controlling for prefecture, yearly, and monthly effects, we found that many climate factors affected both crime and suicide in Japan. In particular, more aggressive behavior and an increased number of suicides were observed when the average temperature increased. Furthermore, we predicted how changes in the climate of Japan will affect future patterns of criminal and suicidal behavior based on two climate change scenarios.


Sign in / Sign up

Export Citation Format

Share Document