scholarly journals GLOBAL-FATE: A GIS-based model for assessing contaminants fate in the global river network

2019 ◽  
Author(s):  
Carme Font ◽  
Francesco Bregoli ◽  
Vicenç Acuña ◽  
Sergi Sabater ◽  
Rafael Marcé

Abstract. GLOBAL-FATE is an open-source, multiplatform, and flexible contaminant fate model that links human consumption of pharmaceutical-like compounds with their concentration in the river network at the global scale. GLOBAL-FATE simulates human consumption and excretion of pharmaceuticals, the attenuation of the contaminant load in wastewater treatment plants, and runoff and contaminant routing along the river network under steady-state, including first order decay of the contaminant in rivers reaches, lakes, and reservoirs. We provide a comprehensive description of model equations and the overall structure of the model, with particular attention to input/output datasets. GLOBAL-FATE is written in C and can be compiled in any platform, and uses inputs in standard GIS format. Additionally, the model can be run inside QGIS as a plug-in. The model has no built-in working resolution, which depends on the user inputs. We exemplify the application of GLOBAL-FATE solving the global concentration of diclofenac in the river network. A comparison with a dataset of diclofenac concentration observations in rivers suggest that GLOBAL-FATE can be successfully applied in real case modelling exercises. The model is particularly sensitive to the generation of contaminant loads by human pharmaceutical consumption, and also to the processes governing contaminant attenuation in the river network.

2019 ◽  
Vol 12 (12) ◽  
pp. 5213-5228 ◽  
Author(s):  
Carme Font ◽  
Francesco Bregoli ◽  
Vicenç Acuña ◽  
Sergi Sabater ◽  
Rafael Marcé

Abstract. GLOBAL-FATE is the first open-source, multiplatform, user-friendly, and modular contaminant-fate model operating at the global scale linking human consumption of pharmaceutical-like compounds with their concentration in the river network. GLOBAL-FATE simulates human consumption and excretion of pharmaceuticals, the attenuation of the contaminant load in waste water treatment plants as well as the attenuation of the contaminant load in river reaches, lakes, and reservoirs as a first-order decay depending on residence time. We provide a comprehensive description of model equations and the overall structure of the model, with special attention to input–output datasets. GLOBAL-FATE is written in C, can be compiled in any platform, and uses inputs in standard geographical information system (GIS) format. Additionally, the model can be run in the Quantum Geographic Information System (QGIS) as a plug-in. The model has no built-in working resolution, which depends on the intended use and the availability of appropriate model inputs and observed data. We exemplify the application of GLOBAL-FATE solving the global concentration of diclofenac in the river network. A comparison with a dataset of diclofenac concentration observations in rivers suggests that GLOBAL-FATE can be successfully applied in real-case modelling exercises. The model is particularly sensitive to the generation of contaminant loads by human pharmaceutical consumption and to the processes governing contaminant attenuation in the river network. GLOBAL-FATE will be a valuable tool for the scientific community and the policymaking arena and could be used to test the effectiveness of large-scale management strategies related to pharmaceutical consumption control and waste water treatment implementation and upgrading.


2021 ◽  
Author(s):  
Heloisa Ehalt Macedo ◽  
Bernhard Lehner ◽  
Jim Nicell ◽  
Günther Grill ◽  
Jing Li ◽  
...  

Abstract. The main objective of wastewater treatment plants (WWTPs) is to remove contaminants such as pathogens, nutrients, and organic and other pollutants from wastewaters using physical, biological and/or chemical processes prior to discharge into receiving waterbodies. However, since WWTPs cannot remove all contaminants, they inevitably represent concentrated point sources of residual contaminant loads into surface waters. To understand the severity and extent of the impact of wastewater discharges from such facilities into rivers and lakes, as well as to identify opportunities of improved management, detailed information about WWTPs is required, including (1) their explicit geospatial locations to identify the waterbodies affected; and (2) individual plant characteristics such as population served, flow rate of effluents, and level of treatment of processed wastewaters. These characteristics are especially important for contaminant fate models that are designed to assess the distribution of substances that are not typically included in environmental monitoring programs, such as contaminants of emerging concern. Although there are several regional datasets that provide information on WWTP locations and characteristics, data are still lacking at a global scale, especially in developing countries. Here we introduce HydroWASTE, a location-explicit global database of 58,502 WWTPs and their characteristics. This database was developed by combining national and regional datasets with auxiliary information to derive or complete missing WWTP characteristics, including the amount of people served. A high-resolution river network with streamflow estimates was used to georeference WWTP outfall locations and calculate each plant’s dilution factor (i.e., the ratio of the natural discharge of the receiving waterbody to the WWTP effluent discharge). The utility of this information was demonstrated in an assessment of the distribution of wastewaters at a global scale. Results show that 1.2 million kilometers of the global river network receive wastewater input from upstream WWTPs, of which more than 90,000 km are downstream of WWTPs that offer only primary treatment. Wastewater ratios originating from WWTPs exceed 10 % in over 72,000 km of rivers, mostly in areas of high population densities in Europe, USA, China, India, and South Africa. In addition, 2,533 plants show a dilution factor of less than 10, which represents a common threshold for environmental concern.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Wanyi Fu ◽  
Xihui Zhang

AbstractSince the detection of phosphine in the wastewater treatment plants in 1988, more and more investigations revealed that phosphine is closely related to ecological activities on a global scale. Here, we present perspectives on the whole dynamic cycles of phosphorus, particularly in terms of phosphine and its interactions with natural ecosystems, as well as the impacts from human activities. It may conclude that the phosphine-driving cycles of phosphorus depend on the coordination of human activities with natural ecosystems. Most importantly, the extensive recovery of phosphorus in numerous urban wastewater treatment plants may seriously obstruct its global cycles to catch up with the ecological needs in natural ecosystems. Phosphine gas plays an important role in the biogeochemical phosphorus cycle. Phosphorus might be one of the important elements participating in the global climate change together with carbon and nitrogen.


2021 ◽  
Vol 12 (3) ◽  
pp. 642
Author(s):  
Jacek RÓŻKOWSKI ◽  
Mariusz RZĘTAŁA

The functioning of Uzbekistan’s economy is closely linked to the water resources of its huge cross-border rivers: the Amu Darya and the Syr Darya, as well as to the groundwater present within their basins. Both natural lakes and artificial reservoirs (e.g. the Aydar-Arnasay system of lakes, the Kayrakkum Reservoir, the Chardarya Reservoir) are present there, which retain significant amounts of water, and large canals with lengths of up to several hundred kilometres which involve complex hydraulic structures are used for irrigation purposes. All these are components of a water management system which needs optimisation; as much as 80% of agricultural land is irrigated, with 70% of the water being lost due to inefficient irrigation systems. The consequence of this allocation of river flows and the overuse of water in irrigation systems has been the disappearance of the Aral Sea (1960 year – 68,900 km2, 2017 year – 8,600 km2) and the inflow of water into the Sarygamysh Lake as well as the reduction of Uzbekistan’s groundwater resources by about 40%. The intensive development of irrigated agriculture is associated with changes in surface and groundwater quality caused, inter alia, by the increased use of chemicals in agriculture and the discharge of collector-drainage waters into river systems as well as their reuse. The extent of environmental degradation in some areas (especially in the Aral Sea region) is unique on a global scale. The origins of Uzbekistan’s other hydrological tourist attractions are related to attempts to ensure the availability of water for both human consumption and industrial use under conditions of water scarcity in the country’s arid and semi-arid climates. Not just the spectacular watercourses and water bodies present there (e.g. rivers, lakes, canals), but also small water retention facilities and minor infrastructure elements (e.g. wells, springs and retention basins, canals, ditches and flow control structures) are of potential tourist importance.


2016 ◽  
Vol 9 (2) ◽  
pp. 841-855 ◽  
Author(s):  
Bertrand Guenet ◽  
Fernando Esteban Moyano ◽  
Philippe Peylin ◽  
Philippe Ciais ◽  
Ivan A Janssens

Abstract. Priming of soil carbon decomposition encompasses different processes through which the decomposition of native (already present) soil organic matter is amplified through the addition of new organic matter, with new inputs typically being more labile than the native soil organic matter. Evidence for priming comes from laboratory and field experiments, but to date there is no estimate of its impact at global scale and under the current anthropogenic perturbation of the carbon cycle. Current soil carbon decomposition models do not include priming mechanisms, thereby introducing uncertainty when extrapolating short-term local observations to ecosystem and regional to global scale. In this study we present a simple conceptual model of decomposition priming, called PRIM, able to reproduce laboratory (incubation) and field (litter manipulation) priming experiments. Parameters for this model were first optimized against data from 20 soil incubation experiments using a Bayesian framework. The optimized parameter values were evaluated against another set of soil incubation data independent from the ones used for calibration and the PRIM model reproduced the soil incubations data better than the original, CENTURY-type soil decomposition model, whose decomposition equations are based only on first-order kinetics. We then compared the PRIM model and the standard first-order decay model incorporated into the global land biosphere model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems). A test of both models was performed at ecosystem scale using litter manipulation experiments from five sites. Although both versions were equally able to reproduce observed decay rates of litter, only ORCHIDEE–PRIM could simulate the observed priming (R2  =  0.54) in cases where litter was added or removed. This result suggests that a conceptually simple and numerically tractable representation of priming adapted to global models is able to capture the sign and magnitude of the priming of litter and soil organic matter.


2020 ◽  
Vol 42 ◽  
pp. e7
Author(s):  
Joanna Cysneiros Silva ◽  
Rayany Magali da Rocha Santana ◽  
Graziele Elisandra do Nascimento ◽  
Alex Leandro Andrade de Lucena ◽  
Ana Maria Ribeiro Bastos da Silva ◽  
...  

Studies and research have been developed around the world on environmental pollution. Among the most diverse types of pollutants, textile dyes have attracted attention in the Brazilian Northeast. These compounds, besides being persistent, resist to the conventional treatments applied in the wastewater treatment plants. Thus, the present study evaluated the degradation of the mixture of direct red 23, direct red 227 and direct orange 26 dyes by advanced oxidation processes (AOPs). It was observed that the homogeneous AOPs were more efficient, being able to degrade 100% of the chromophoric groups after the optimization of the variables [H2O2], [Fe] and pH. The reaction kinetics for the photo-Fenton process followed a pseudo-first order non-linear model, with rapid decay of the concentrations in the first 60 min. Aiming to have a methodology capable of predicting the degradation efficiency for the studied processes, it was verified that the artificial neural networks MLP 4-9-3 and MLP 5-6-3 well represent the data from the homogeneous and heterogeneous processes, respectively. A toxicity study was carried out using seeds, bacteria and microcrustaceans and it was found that the intermediate compounds formed during the treatment process act differently for each of them.


2016 ◽  
Vol 13 (8) ◽  
pp. 2221-2240 ◽  
Author(s):  
Jérôme Ogée ◽  
Joana Sauze ◽  
Jürgen Kesselmeier ◽  
Bernard Genty ◽  
Heidi Van Diest ◽  
...  

Abstract. Estimates of photosynthetic and respiratory fluxes at large scales are needed to improve our predictions of the current and future global CO2 cycle. Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere and has been proposed as a new tracer of photosynthetic gross primary productivity (GPP), as the uptake of OCS from the atmosphere is dominated by the activity of carbonic anhydrase (CA), an enzyme abundant in leaves that also catalyses CO2 hydration during photosynthesis. However soils also exchange OCS with the atmosphere, which complicates the retrieval of GPP from atmospheric budgets. Indeed soils can take up large amounts of OCS from the atmosphere as soil microorganisms also contain CA, and OCS emissions from soils have been reported in agricultural fields or anoxic soils. To date no mechanistic framework exists to describe this exchange of OCS between soils and the atmosphere, but empirical results, once upscaled to the global scale, indicate that OCS consumption by soils dominates OCS emission and its contribution to the atmospheric budget is large, at about one third of the OCS uptake by vegetation, also with a large uncertainty. Here, we propose a new mechanistic model of the exchange of OCS between soils and the atmosphere that builds on our knowledge of soil CA activity from CO2 oxygen isotopes. In this model the OCS soil budget is described by a first-order reaction–diffusion–production equation, assuming that the hydrolysis of OCS by CA is total and irreversible. Using this model we are able to explain the observed presence of an optimum temperature for soil OCS uptake and show how this optimum can shift to cooler temperatures in the presence of soil OCS emission. Our model can also explain the observed optimum with soil moisture content previously described in the literature as a result of diffusional constraints on OCS hydrolysis. These diffusional constraints are also responsible for the response of OCS uptake to soil weight and depth observed previously. In order to simulate the exact OCS uptake rates and patterns observed on several soils collected from a range of biomes, different CA activities had to be invoked in each soil type, coherent with expected physiological levels of CA in soil microbes and with CA activities derived from CO2 isotope exchange measurements, given the differences in affinity of CA for both trace gases. Our model can be used to help upscale laboratory measurements to the plot or the region. Several suggestions are given for future experiments in order to test the model further and allow a better constraint on the large-scale OCS fluxes from both oxic and anoxic soils.


Author(s):  
Alex Neumann

The increased use of Pharmaceuticals and Personal Care Products (PPCP’s) has led to an increase in many population health problems. In 1997, 15–50 % of women had developed breasts by the age of 8. Ten years prior to this, breast development by the age of 8 was uncommon. There are certain researchers who believe that this may be linked to the pharmaceuticals humans are consuming.Wastewater treatment plants are a significant gateway by which pharmaceuticals enter the water supply. Many pharmaceuticals find themselves in wastewater treatment plants, however the plants do not target these specific chemicals for treatment. As a result, they are released into the surrounding bodies of water, and accumulate in aquatic animals. When water treatment plants take water from the bodies of water and distribute it for human consumption, humans consume these chemicals.Many techniques for removing the pharmaceuticals have been tested, but there is still much uncertainty as to which are effective methods. The potential hazards associated with these chemicals are still uncertain, but the current evidence is indicating that it is very likely that these chemicals can be very hazardous.


1971 ◽  
Vol 26 (7) ◽  
pp. 1140-1146
Author(s):  
F. Winterberg

Abstract Based on Heisenberg's statistical theory of turbulence, a model for steady state turbulent convection is herein proposed, and on the basis of this model, equations for the energy spectrum for steady state turbulent convection are derived. The spectrum is obtained from the solution of a nonlinear integral equation. After the integral equation is brought into a universally valid nondimensional form, it is transformed into a nonlinear first order differential equation to be solved numerically, with the Rayleigh number appearing as the only parameter. The energy spectrum has a substantial deviation from the Kolmogoroff law, as a result of the buoyancy force acting on the rising and falling eddies. The presented theory may be applicable to convection in planetary and stellar atmospheres wherein the radiative heat transport is small.


Sign in / Sign up

Export Citation Format

Share Document