scholarly journals Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils

2016 ◽  
Author(s):  
Julie N. Weitzman ◽  
Jason P. Kaye

Abstract. While eutrophication is often attributed to contemporary nutrient pollution, there is growing evidence that past practices, like the accumulation of legacy sediment behind historic milldams, are also important. Given their prevalence, there is a critical need to understand how N flows through, and is retained in, legacy sediments to improve predictions and management of N transport from uplands to streams in the context of climatic variability and land-use change. Our goal was to determine how nitrate (NO3-) is cycled through the soil of a legacy sediment strewn stream before and after soil drying. We extracted 10.16 cm radius intact soil columns that extended 30 cm into each of the three significant soil horizons at Big Spring Run (BSR) in Lancaster, Pennsylvania: surface legacy sediment characterized by a newly developing mineral A horizon soil, mid-layer legacy sediment consisting of mineral B horizon soil, and a dark, organic-rich, buried relict A horizon soil. Columns were first pre-incubated at field capacity, and then isotopically labeled nitrate (15NO3-) was added and allowed to drain to estimate retention. The columns were then air-dried and subsequently rewet with N-free water and allowed to drain to quantify the drought-induced loss of 15NO3- from the different horizons. We found the highest initial 15N retention in the mid-layer legacy sediment (17 ± 4 %) and buried relict A soil (14 ± 3 %) horizons, with significantly lower retention in the surface legacy sediment (6 ± 1 %) horizon. As expected, rewetting dry soil resulted in 15N losses in all horizons, with the greatest losses in the buried relict A horizon soil, followed by the mid-layer legacy sediment and surface legacy sediment horizons, respectively. The 15N remaining in the soil following the post-drought leaching was highest in the mid-layer legacy sediment, intermediate in the surface legacy sediment, and lowest in the buried relict A horizon soil. Fluctuations in the water table at BSR which affect saturation of the buried relict A horizon soil could lead to great loses of NO3- from the soil, while vertical flow through the legacy sediment-rich soil profile that originates in the surface has the potential to retain more NO3-. Restoration that seeks to reconnect the groundwater and surface water, which will decrease the number of drying-rewetting events imposed on the relict A horizon soils, could initially lead to increased losses of NO3- to nearby stream waters.

SOIL ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 95-112 ◽  
Author(s):  
Julie N. Weitzman ◽  
Jason P. Kaye

Abstract. While eutrophication is often attributed to contemporary nutrient pollution, there is growing evidence that past practices, like the accumulation of legacy sediment behind historic milldams, are also important. Given their prevalence, there is a critical need to understand how N flows through, and is retained in, legacy sediments to improve predictions and management of N transport from uplands to streams in the context of climatic variability and land-use change. Our goal was to determine how nitrate (NO3−) is cycled through the soil of a legacy-sediment-strewn stream before and after soil drying. We extracted 10.16 cm radius intact soil columns that extended 30 cm into each of the three significant soil horizons at Big Spring Run (BSR) in Lancaster, Pennsylvania: surface legacy sediment characterized by a newly developing mineral A horizon soil, mid-layer legacy sediment consisting of mineral B horizon soil and a dark, organic-rich, buried relict A horizon soil. Columns were first preincubated at field capacity and then isotopically labeled nitrate (15NO3−) was added and allowed to drain to estimate retention. The columns were then air-dried and subsequently rewet with N-free water and allowed to drain to quantify the drought-induced loss of 15NO3− from the different horizons. We found the highest initial 15N retention in the mid-layer legacy sediment (17 ± 4 %) and buried relict A soil (14 ± 3 %) horizons, with significantly lower retention in the surface legacy sediment (6 ± 1 %) horizon. As expected, rewetting dry soil resulted in 15N losses in all horizons, with the greatest losses in the buried relict A horizon soil, followed by the mid-layer legacy sediment and surface legacy sediment horizons. The 15N remaining in the soil following the post-drought leaching was highest in the mid-layer legacy sediment, intermediate in the surface legacy sediment, and lowest in the buried relict A horizon soil. Fluctuations in the water table at BSR which affect saturation of the buried relict A horizon soil could lead to great loses of NO3− from the soil, while vertical flow through the legacy-sediment-rich soil profile that originates in the surface has the potential to retain more NO3−. Restoration that seeks to reconnect the groundwater and surface water, which will decrease the number of drying–rewetting events imposed on the relict A horizon soils, could initially lead to increased losses of NO3− to nearby stream waters.


2020 ◽  
Vol 15 (1) ◽  
pp. 93-102
Author(s):  
Cristian PĂLTINEANU ◽  
◽  
Andrei VRINCEANU ◽  
Anca-Rovena LĂCĂTUȘU ◽  
Radu LĂCĂTUŞU ◽  
...  

Neurosurgery ◽  
1987 ◽  
Vol 20 (2) ◽  
pp. 249-253 ◽  
Author(s):  
Jack Chang ◽  
Margot R. Roach

Abstract In some cases, basilar artery aneurysms cannot be repaired surgically and the basilar artery is occluded near the neck of the aneurysm to stop flow into the aneurysm. After the operation, the aneurysm can fill only by flow through the posterior communicating arteries (PCoAs). Hemodynamically, if the flow were the same in both PCoAs and there were no phase lag in the pressures, there would be no pressure gradient for flow to go across the neck of the aneurysm and therefore the aneurysm would thrombose. We have assumed that the diameter of the artery is roughly proportional to the flow that goes through it chronically. We measured the diameters of the PCoAs in 25 patients who had hunterian ligation of the basilar artery. We also measured the maximal width, height, and depth of the aneurysms on angiograms obtained before and after operation. Eleven aneurysms thrombosed completely and had a diameter ratio of > 0.6; 10 aneurysms thrombosed partially and had a diameter ratio of 0.46 ˜ 1.0; 4 aneurysms did not change and had a diameter ratio of <0.45. The ratio of the sizes of the PCoAs pre- and postoperatively was comparable in most cases, so we believe that it is possible to predict reasonably accurately from this simple measurement whether the aneurysm is likely to thrombose if the basilar artery is ligated.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Allophanic soils are dark-colored young soils derived mainly from volcanic ash. These soils typically have a low bulk density (< 0.9 Mg/m3), a high water retention capacity (100% by weight at field capacity), and contain predominantly allophanes, imogolite, halloysite, and amorphous Al silicates in the clay fraction. These soils are found in small, restricted areas with volcanic activity. Worldwide, there are about 120 million ha of allophanic soils, which is about 1% of the Earth's ice-free land surface. In tropical regions, allophanic soils are among the most productive and intensively used agricultural soils. They occur in the Philippines, Indonesia, Papua New Guinea, the Caribbean and South Pacific islands, East Africa, Central America, and the Andean rim of South America. Allophanic soils are primarily Andisols and andic Inceptisols, Entisols, Mollisols, and Alfisols according to the Soil Taxonomy classification. Allophanic soils generally have a dark-colored surface soil, slippery or greasy consistency, a predominantly crumb and granular structure, and a low bulk density ranging from 0.3 to 0.8 Mg/m3. Although allophanic soils are apparently well-drained, they still have a very high water content many days after rain. When the soil is pressed between fingers, it gives a plastic, greasy, but non-sticky sensation of a silty or loamy texture. When dry, the soil loses its greasiness and becomes friable and powdery. The low bulk density of allophanic soils is closely related to the high soil porosity. For example, moderately weathered allophanic soils typically have a total porosity of 78%, with macro-, meso-, and micropores occupying 13%, 33%, and 32%, respectively. Water retained in the mesopores is readily available for plant uptake. Water retained in the micropores is held strongly by soil particles and is not readily available for plant use. The macropores provide soil aeration and facilitate water infiltration. The high water retention capacity is also associated with the high soil porosity. In allophanic soils formed under a humid climate, especially those containing large amounts of allophane, the moisture content at field capacity can be as high as 300%, calculated on a weight basis. Such extremely high values of water content seem misleading.


2011 ◽  
Vol 50 (No. 10) ◽  
pp. 463-469 ◽  
Author(s):  
J. Akhter ◽  
K. Mahmood ◽  
K.A. Malik ◽  
A. Mardan ◽  
M. Ahmad ◽  
...  

The hydrogel amendments may improve seedling growth and establishment by increasing water retention capacity of soils and regulating the plants available water supplies, particularly under arid environments. The effects of different levels of a locally prepared hydrogel were studied on the moisture properties of sandy loam and loam soils (fine-loamy, mixed, hyperthermic Typic Haplargids, USDA, Luvic Yermosol, FAO) and on growth response of three plant species, viz. barley (Hordeum vulgare L.), wheat (Triticum aestivum L.) and chickpea (Cicer arietinum L.). Water absorption by gel was rapid and highest in distilled water and was inhibited by an increase in water salinity. The addition of 0.1, 0.2 and 0.3% hydrogel increased the moisture retention (&theta;r) at field capacity linearly (r = 0.988) and thus the amount of plant available water significantly in both sandy loam and loam soils compared to the untreated soils. Seed germination of wheat and barley was not affected but seedling growth of both species was improved by the gel amendment. In loam soil, seed germination of chickpea was higher with 0.2% gel and seedling growth increased with increase in gel level compared with control conditions. The hydrogel amendment caused a delay by 4&ndash;5 days in wilting of seedlings grown in both soils compared with control conditions. The hydrogel amendment was effective in improving soil moisture availability and thus increased plant establishment. However, the varied responses of plant species in sandy loam and loam soils warrant further studies on the behaviour of different soil types with gel amendments.


2020 ◽  
pp. 1-12
Author(s):  
Shengqiang Tang ◽  
Dongli She ◽  
Hongde Wang

Revealing the influences of soil salinity on soil structure and hydraulic properties contributes to understanding the mechanism of salinity restraining rehabilitation of saline sodic soil in coastal area. After being passed through a 1 mm sieve, silt loam and silty clay were irrigated with saline water to achieve different soil salinities to highlight the effect of irrigation salinity on aggregate formation from primary particles. Three irrigation events with different saline water were conducted in the same 2 mo interval in soil columns; the soil columns were subjected to natural evaporation during the interval. The soil salinity, soil structure, soil–water characteristic curve, and saturated hydraulic conductivity (Ks) results were determined after the end of the third drying subprocess. The results showed that the proportion of water-stable macroaggregates (0.25–2 mm) in the silt loam and silty clay increased as the soil salt content (SSC) increased. Under the same matric suction, the retention capacity and plant-available water capacity (PAWC) of the silt loam first increased and then decreased, with the SSC increasing to a maximum of approximately 14.5 g kg−1. The retention capacity of the silty clay increased with the SSC, whereas the PAWC decreased with the SSC. The Ks of the silt loam increased with SSC. This study reveals the effects of soil salinity on aggregate formation from primary particles in wetting–drying cycles and describes the corresponding changes in hydraulic properties, which influence the rehabilitation of saline sodic soils in coastal areas.


Author(s):  
Jung-Yeul Jung ◽  
Ki-Taek Byun ◽  
Jae-Ho Hong ◽  
Ho-Young Kwak

Proteinaceous bubbles of 185 nm in average diameter were synthesized by a sonochemical treatment of bovine serum albumin in aqueous solution and the nanoparticles (TiO2) solution was made by ultrasonic irradiation. To study the macroscopic flow behavior associated with the changes in the state of microparticles, a flow test of these solutions in microchannels was done. Also the size distributions of the proteinaceous bubbles in solution before and after the flow test were measured by a light scattering method. Test results show that the air-filled proteinaceous bubbles in solution adjust their size to reduce the shear stress encountered in the flow through the microchannel. On the other hand, the flow rate of the solution with nanoparticles suspensions becomes smaller than that of deionized water above the flow rate of 6 cm3/min in the microchannel with a dimension of 100×150 μm2.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 860 ◽  
Author(s):  
Helen Coarita Fernandez ◽  
Diana Amaya Ramirez ◽  
Ruben Teixeira Franco ◽  
Pierre Buffière ◽  
Rémy Bayard

Different methods were tested to evaluate the performance of a pretreatment before anaerobic digestion. Besides conventional biochemical parameters, such as the biochemical methane potential (BMP), the methane production rate, or the extent of solubilization of organic compounds, methods for physical characterization were also developed in the present work. Criteria, such as the particle size distribution, the water retention capacity, and the rheological properties, were thus measured. These methods were tested on samples taken in two full-scale digesters operating with cattle manure as a substrate and using hammer mills. The comparison of samples taken before and after the pretreatment unit showed no significant improvement in the methane potential. However, the methane production rate increased by 15% and 26% for the two hammer mills, respectively. A relevant improvement of the rheological properties was also observed. This feature is likely correlated with the average reduction in particle size during the pretreatment operation, but these results needs confirmation in a wider range of systems.


2020 ◽  
Vol 12 (19) ◽  
pp. 8122
Author(s):  
Julián González-Trinidad ◽  
Hugo Enrique Júnez-Ferreira ◽  
Carlos Bautista-Capetillo ◽  
Laura Ávila Dávila ◽  
Cruz Octavio Robles Rovelo

The increasing population demands a greater quantity of food. In order to satisfy the world’s demand, one of the main challenges worldwide consists of modernizing the current irrigation systems. This research shows an experience carried out in a modernized irrigation module in Central-North Mexico following these objectives: to evaluate the impact of the modernization of the irrigation module, to analyze the agricultural productivity, and to assess a group of parameters related with the agricultural production (system conduction and distribution efficiencies, water productivity, among others) and the water volumes after and before the modernization. After a drought period, a methodology was performed in commercial parcels in 2013 to increase the yield of different crops. Some of the activities were: soil leveling, estimation of the soil properties (field capacity, wilting point, bulk density, pH, and organic matter), optimum fertilization applications, use of a model to scheduling irrigation, measure volumes extracted at the parcel level. With the modernization and the method used, around 1800 and 2000 m3 ha−1 were saved with respect to the initial granted volume by the Comisión Nacional del Agua and increase in the global efficiency was also achieved (from 55% to 85%). All crop yields increased, i.e., for corn from 2.5 kg/m3 to 3.8 kg/m3. The impact of modernization accompanied with an effective operation allowed a significant increase of the crop yield and water productivity. Despite a controlled distribution of water being carried out, future research should contemplate free water demand scenarios and automation irrigation for improving the module operation.


2020 ◽  
Vol 56 (6) ◽  
pp. 785-797 ◽  
Author(s):  
Xiuzhen Shi ◽  
Jianqing Wang ◽  
Christoph Müller ◽  
Hang-Wei Hu ◽  
Ji-Zheng He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document