scholarly journals Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model

2020 ◽  
Vol 14 (5) ◽  
pp. 1651-1672 ◽  
Author(s):  
Fanny Larue ◽  
Ghislain Picard ◽  
Laurent Arnaud ◽  
Inès Ollivier ◽  
Clément Delcourt ◽  
...  

Abstract. Most models simulating snow albedo assume a flat and smooth surface, neglecting surface roughness. However, the presence of macroscopic roughness leads to a systematic decrease in albedo due to two effects: (1) photons are trapped in concavities (multiple reflection effect) and (2) when the sun is low, the roughness sides facing the sun experience an overall decrease in the local incidence angle relative to a smooth surface, promoting higher absorption, whilst the other sides have weak contributions because of the increased incidence angle or because they are shadowed (called the effective-angle effect here). This paper aims to quantify the impact of surface roughness on albedo and to assess the respective role of these two effects, with (1) observations over varying amounts of surface roughness and (2) simulations using the new rough surface ray-tracing (RSRT) model, based on a Monte Carlo method for photon transport calculation. The observations include spectral albedo (400–1050 nm) over manually created roughness surfaces with multiple geometrical characteristics. Measurements highlight that even a low fraction of surface roughness features (7 % of the surface) causes an albedo decrease of 0.02 at 1000 nm when the solar zenith angle (θs) is larger than 50∘. For higher fractions (13 %, 27 % and 63 %), and when the roughness orientation is perpendicular to the sun, the decrease is of 0.03–0.04 at 700 nm and of 0.06–0.10 at 1000 nm. The impact is 20 % lower when roughness orientation is parallel to the sun. The observations are subsequently compared to RSRT simulations. Accounting for surface roughness improves the model observation agreement by a factor of 2 at 700 and 1000 nm (errors of 0.03 and 0.04, respectively) compared to simulations considering a flat smooth surface. The model is used to explore the albedo sensitivity to surface roughness with varying snow properties and illumination conditions. Both multiple reflections and the effective-angle effect have a greater impact with low specific surface area (SSA; <10 m2 kg−1). The effective-angle effect also increases rapidly with θs at large θs. This latter effect is larger when the overall slope of the surface is facing away from the sun and has a roughness orientation perpendicular to the sun. For a snowpack where artificial surface roughness features were created, we showed that a broadband albedo decrease of 0.05 may cause an increase in the net shortwave radiation of 80 % (from 15 to 27 W m−2). This paper highlights the necessity of considering surface roughness in the estimation of the surface energy budget and opens the way for considering natural rough surfaces in snow modelling.

2019 ◽  
Author(s):  
Fanny Larue ◽  
Ghislain Picard ◽  
Laurent Arnaud ◽  
Inès Ollivier ◽  
Clément Delcourt ◽  
...  

Abstract. Most models simulating snow albedo assume a flat and smooth surface, neglecting surface roughness. However, the presence of macroscopic roughness leads to a systematic decrease in albedo due to two effects: 1) photons are trapped in concavities (multiple reflection effect) and, 2) when the sun is low, the roughness sides facing the sun experience an overall decrease in the local incident angle relative to a smooth surface, promoting higher absorption, whilst the other sides has weak contributions because of the increased incident angle or because they are shadowed (called the effective angle effect here). This paper aims to quantify the impact of surface roughness on albedo and to assess the respective role of these two effects, with 1) observations over varying amounts of surface roughness, and 2) simulations using the new Rough Surface Ray Tracer (RSRT) model, based on a Monte Carlo method for photon transport calculation. The observations include spectral albedo (400–1050 nm) over manually-created roughness surfaces with multiple geometrical characteristics. Measurements highlight that even a low fraction of surface roughness features (7 % of the surface) causes an albedo decrease of 0.02 at 1000 nm when the solar zenith angle (Өs) is larger than 50°. For higher fractions (13 %, 27 % and 63 %), and when the roughness orientation is perpendicular to the sun, the decrease is of 0.03–0.04 at 700 nm and of 0.06–0.10 at 1000 nm. The impact is 20 % lower when roughness orientation is parallel to the sun. The observations are subsequently compared to RSRT simulations. Accounting for surface roughness improves the model observation agreement by a factor two at 700 nm and 1000 nm (errors of 0.03 and 0.04, respectively), compared to simulations considering a flat smooth surface. The model is used to explore the albedo sensitivity to surface roughness with varying snow properties and illumination conditions. Both multiple reflections and the effective angle effect have more impact with low SSA (


2020 ◽  
Author(s):  
Emma Tronquo ◽  
Hans Lievens ◽  
Niko E.C. Verhoest

&lt;div&gt;&amp;#160;&lt;/div&gt;&lt;p&gt;Current radar systems are generally monostatic. However, some theoretical research indicated the potential of bistatic radar measurements to improve applications. In the research presented, we explore the use of InSAR/PolInSAR mono- and bistatic measurements acquired in L-band for soil moisture monitoring. The main objective of this study is to compare the performance of soil moisture retrieval from monostatic with that obtained through bistatic observations.&lt;/p&gt;&lt;p&gt;The recent BelSAR campaign (in 2018) provided time series of airborne mono- and bistatic measurements at L-band, recorded during the growing season including bare soil conditions. In addition, in situ measurements of soil moisture and surface roughness were acquired concurrently with the airborne flights. Here, we provide an initial assessment of the sensitivity of the scatter observations with respect to soil moisture and surface roughness. The literature suggests that the impact of surface roughness on the retrieval of soil moisture decreases due to the simultaneous use of the mono- and bistatic measurements. However, our preliminary results show that the bistatic data do not provide substantial added value to reduce the impact of surface roughness on soil moisture retrieval. Further, we validate both mono- and bistatic scatter simulations from the Advanced Integral Equation Model (AIEM) using the airborne measurements. The AIEM allows additional investigations with respect to the sensitivity towards surface roughness and soil moisture of both mono- and bistatic scattering signals, as well as the impacts of sensor-related parameters such as the incidence angle, the bistatic configuration (e.g. the location of the second sensor), the frequency and the polarization.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2012 ◽  
Vol 13 (3) ◽  
pp. 1119-1130 ◽  
Author(s):  
M. Jahanzeb Malik ◽  
Rogier van der Velde ◽  
Zoltan Vekerdy ◽  
Zhongbo Su

Abstract This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park (Colorado) that are part of the 2002/03 Cold Land Processes Field Experiment (CLPX). The assimilated snow albedo products are 1) the standard Moderate Resolution Imaging Spectrometer (MODIS) product (MOD10A1) and 2) retrievals from MODIS observations with the recently developed Pattern-Based Semiempirical (PASS) approach. The performance of the Noah simulations, with and without assimilation, is evaluated using the in situ measurements of snow albedo, upward shortwave radiation, and snow depth. The results show that simulations with albedo assimilation agree better with the measurements. However, because of the limited impact of snow albedo updates after subsequent snowfall, the mean (or seasonal) error statistics decrease significantly for only two of the three CLPX sites. Though the simulated snow depth and duration for the snow season benefit from the assimilation, the greatest improvements are found in the simulated upward shortwave radiation, with root mean squared errors reduced by about 30%. As such, this study demonstrates that assimilation of satellite-observed snow albedo can improve LSM simulations, which may positively affect the representation of hydrological and surface energy budget processes in runoff and numerical weather prediction models.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-18
Author(s):  
Jedidiah Anderson

This paper deals with the concept of Al-Waṭan, or ‘the homeland’, in Arabic in The Shell (Al-Qawqʿa) by Muṣṭafā Khalifa and Men in the Sun (Rijāl fīsh-Shams) by Ghassān Kanafānī. Analysis of how alienation from this concept has affected both Khalifa's and Kanafānī's characters is carried out through the lenses of Deleuze and Guattari's theories of rhizomatic associations and minor literature, as well as through the lens of affect theory. The paper also examines parallels between definitions of Al-Waṭan/the homeland in Ibn Manẓūr's classical dictionary Lisān al-ʿArab and Deleuze and Guattari's concepts of the war machine and the apparatus of capture.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


2021 ◽  
Vol 13 (8) ◽  
pp. 1463
Author(s):  
Susan C. Steele-Dunne ◽  
Sebastian Hahn ◽  
Wolfgang Wagner ◽  
Mariette Vreugdenhil

The TU Wien Soil Moisture Retrieval (TUW SMR) approach is used to produce several operational soil moisture products from the Advanced Scatterometer (ASCAT) on the Metop series of satellites as part of the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The incidence angle dependence of backscatter is described by a second-order Taylor polynomial, the coefficients of which are used to normalize ASCAT observations to the reference incidence angle of 40∘ and for correcting vegetation effects. Recently, a kernel smoother was developed to estimate the coefficients dynamically, in order to account for interannual variability. In this study, we used the kernel smoother for estimating these coefficients, where we distinguished for the first time between their two uses, meaning that we used a short and fixed window width for the backscatter normalisation while we tested different window widths for optimizing the vegetation correction. In particular, we investigated the impact of using the dynamic vegetation parameters on soil moisture retrieval. We compared soil moisture retrievals based on the dynamic vegetation parameters to those estimated using the current operational approach by examining their agreement, in terms of the Pearson correlation coefficient, unbiased RMSE and bias with respect to in situ soil moisture. Data from the United States Climate Research Network were used to study the influence of climate class and land cover type on performance. The sensitivity to the kernel smoother half-width was also investigated. Results show that estimating the vegetation parameters with the kernel smoother can yield an improvement when there is interannual variability in vegetation due to a trend or a change in the amplitude or timing of the seasonal cycle. However, using the kernel smoother introduces high-frequency variability in the dynamic vegetation parameters, particularly for shorter kernel half-widths.


2021 ◽  
pp. 089270572199320
Author(s):  
Prakhar Kumar Kharwar ◽  
Rajesh Kumar Verma

The new era of engineering society focuses on the utilization of the potential advantage of carbon nanomaterials. The machinability facets of nanocarbon materials are passing through an initial stage. This article emphasizes the machinability evaluation and optimization of Milling performances, namely Surface roughness (Ra), Cutting force (Fc), and Material removal rate (MRR) using a recently developed Grey wolf optimization algorithm (GWOA). The Taguchi theory-based L27 orthogonal array (OA) was employed for the Machining (Milling) of polymer nanocomposites reinforced by Multiwall carbon nanotube (MWCNT). The second-order polynomial equation was intended for the analysis of the model. These mathematical models were used as a fitness function in the GWOA to predict machining performances. The ANOVA outcomes efficiently explore the impact of machine parameters on Milling characteristics. The optimal combination for lower surface roughness value is 1.5 MWCNT wt.%, 1500 rpm of spindle speed, 50 mm/min of feed rate, and 3 mm depth of cut. For lower cutting force, 1.0 wt.%, 1500 rpm, 90 mm/min feed rate and 1 mm depth of cut and the maximize MRR was acquired at 0.5 wt.%, 500 rpm, 150 mm/min feed rate and 3 mm depth of cut. The deviation of the predicted value from the experimental value of Ra, Fc, and MRR are found as 2.5, 6.5 and 5.9%, respectively. The convergence plot of all Milling characteristics suggests the application potential of the GWO algorithm for quality improvement in a manufacturing environment.


Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


Author(s):  
Kristie Huda ◽  
Kenneth F. Swan ◽  
Cecilia T. Gambala ◽  
Gabriella C. Pridjian ◽  
Carolyn L. Bayer

AbstractFunctional photoacoustic imaging of the placenta could provide an innovative tool to diagnose preeclampsia, monitor fetal growth restriction, and determine the developmental impacts of gestational diabetes. However, transabdominal photoacoustic imaging is limited in imaging depth due to the tissue’s scattering and absorption of light. The aim of this paper was to investigate the impact of geometry and wavelength on transabdominal light delivery. Our methods included the development of a multilayer model of the abdominal tissue and simulation of the light propagation using Monte Carlo methods. A bifurcated light source with varying incident angle of light, distance between light beams, and beam area was simulated to analyze the effect of light delivery geometry on the fluence distribution at depth. The impact of wavelength and the effects of variable thicknesses of adipose tissue and muscle were also studied. Our results showed that the beam area plays a major role in improving the delivery of light to deep tissue, in comparison to light incidence angle or distance between the bifurcated fibers. Longer wavelengths, with incident fluence at the maximum permissible exposure limit, also increases fluence within deeper tissue. We validated our simulations using a commercially available light delivery system and ex vivo human placental tissue. Additionally, we compared our optimized light delivery to a commercially available light delivery system, and conclude that our optimized geometry could improve imaging depth more than 1.6×, bringing the imaging depth to within the needed range for transabdominal imaging of the human placenta.


Sign in / Sign up

Export Citation Format

Share Document