scholarly journals Ayurvedic perspective of treating Nidranash

Author(s):  
Sonali Rathod

Sleep restores energy to the body and provides relaxation particularly to the nervous system. It helps in building and restoring the control of the brain and nervous system over the muscles glands and other body systems. Nidra (Sleep) has its important role in healthy life.  The word Nidranasha denotes the phase of devoid of sleep which itself is the main Lakshana of this condition. Ayurveda indicates psychological respite as key along with Vataghna treatment in managing insomnia. Entire management is prescribed in the form of specific procedures, psychiatric treatment, drugs and Diet.

Parasitology ◽  
1941 ◽  
Vol 33 (4) ◽  
pp. 373-389 ◽  
Author(s):  
Gwendolen Rees

1. The structure of the proboscides of the larva of Dibothriorhynchus grossum (Rud.) is described. Each proboscis is provided with four sets of extrinsic muscles, and there is an anterior dorso-ventral muscle mass connected to all four proboscides.2. The musculature of the body and scolex is described.3. The nervous system consists of a brain, two lateral nerve cords, two outer and inner anterior nerves on each side, twenty-five pairs of bothridial nerves to each bothridium, four longitudinal bothridial nerves connecting these latter before their entry into the bothridia, four proboscis nerves arising from the brain, and a series of lateral nerves supplying the lateral regions of the body.4. The so-called ganglia contain no nerve cells, these are present only in the posterior median commissure which is therefore the nerve centre.


Author(s):  
Georgia E. Hodes

In the late 20th century, the discovery that the immune system and central nervous system were not autonomous revolutionized exploration of the mechanisms by which stress contributes to immune disorders and immune regulation contributes to mental illness. There is increasing evidence of stress as integrated across the brain and body. The immune system acts in concert with the peripheral nervous system to shape the brain’s perception of the environment. The brain in turn communicates with the endocrine and immune systems to guide their responses to that environment. Examining the groundwork of mechanisms governing communication between the body and brain will hopefully provide a better understanding of the ontogeny and symptomology of some mood disorders.


2021 ◽  
Vol 10 (2) ◽  
pp. 29-43
Author(s):  
Rohit Rastogi ◽  
Mamta Saxena ◽  
Devendra K. Chaturvedi ◽  
Mayank Gupta ◽  
Akshit Rajan Rastogi ◽  
...  

Our entire body, including the brain and nervous system, works with the help of various kinds of biological stuff which includes positively charged ions of elements like sodium, potassium, and calcium. The different body parts have different energy levels, and by measuring the energy level, we can also measure the fitness of an individual. Moreover, this energy and fitness are directly related to mental health and the signals being transmitted between the brain and other parts of the body. Various activities like walking, talking, eating, and thinking are performed with the help of these transmission signals. Another critical role played by them is that it helps in examining the mechanisms of cells present at various places in the human body and signaling the nervous system and brain if they are properly functioning or not. This manuscript is divided into two parts where, in the first part, it provides the introduction, background, and extensive literature survey on Kirlian experiments to measure the human's organ energy.


Author(s):  
Michael Trimble

This chapter discusses the clinical necessity from which the intersection of neurology and psychiatry arose, exploring different eras and their associated intellectual milestones in order to understand the historical framework of contemporary neuropsychiatry. Identifying Hippocrates’ original acknowledgement of the relation of the human brain to epilepsy as a start point, the historical development of the field is traced. This encompasses Thomas Willis and his nascent descriptions of the limbic system, the philosophical and alchemical strides of the Enlightenment, and the motivations behind the Romantic era attempts to understand the brain. It then follows the growth of the field through the turn of the twentieth century, in spite of the prominence of psychoanalysis and the idea of the brainless mind, and finally the understanding of the ‘integrated action’ of the body and nervous system, which led to the integration of psychiatry and neurology, allowing for the first neuropsychiatric examinations of epilepsy.


Author(s):  
Matthew Wilson Smith

Wagnerites and anti-Wagnerites frequently agreed at least in this: that the novelty of Wagner’s art was that it was directed first and foremost at the nerves. And it was not simply audience members who understood Wagner’s music dramas as essentially neural; it was also Wagner himself. Critics have long appreciated the importance of Wagner’s Beethoven essay of 1870, an essay that theorizes Wagner’s late movement toward “inner drama” and toward the dominance of music over text. Largely unappreciated, however, is the central importance of the neurological sciences in this transition; what Wagner aimed at in this essay was not simply the inner drama of the psyche but also—and inextricably—the inner drama of the body: that is, the drama of the brain and the nervous system. It is this profoundly neuropsychological understanding of art that drives Wagner’s late work—above all his final music drama, Parsifal.


1951 ◽  
Vol 97 (409) ◽  
pp. 792-800 ◽  
Author(s):  
L. Crome

The problems of the interdependence and unity of the brain and body have been put on a scientific basis by Pavlov and his successors. Bykov (1947) has, for example, been able to demonstrate that the cortex plays a leading part in the regulation of somatic processes, such as secretion of urine, blood pressure, peristalsis and metabolism. It is therefore reasonable to argue that lesions of the central nervous system will be reflected in the pathogenesis and course of morbid processes in the body. It does not follow, however, that this influence will necessarily be in the direction of greater lability, more rapid pathogenesis or more extensive destruction. The outstanding feature of the central nervous system is its plasticity and power of compensation. It is therefore possible and probable that those parts of the nervous system which remain intact will take over and compensate for the function of the lost ones. Emotion may, for example, lead to polyuria, but it does not follow that urinary secretion will be impaired in a leucotomized patient. The brain may well play an important part in the infective processes of a normal person, but the defence against infection in a microcephalic idiot may remain perfectly adequate, and may even be more effective than in a normal person, provided that the mechanism of the immunity and phagocytosis had been more fully mobilized in the course of his previous life.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 37-42
Author(s):  
Hadjer Bekhedda ◽  
Norredine Menadi ◽  
Abbassia Demmouche ◽  
Abdelaziz Ghani ◽  
Hicham Mai

Introduction: Aluminum (Al) has the potential to be neurotoxic in human and animals, is present everywhere in the environment, many manufactured foods and medicines and is also added to drinking water for purification purposes and tooth paste cosmetic products They accumulate in living organisms and disrupt balances, and accumulate in the body biological systems, causing toxic effects (They may affect the nervous system, kidney, liver, respiratory or other functions). Nervous system is a vulnerable target for toxicants due to critical voltages which must be maintained in the cells and the all responses when voltages reach threshold levels. Objective This study aimed to expose the impact of aluminum chloride (AlCl3) on brain architecture. Methods: In our study, twenty healthy female rats were intraperitoneal administered of aluminum chloride (ALCL3) at 10 mg / kg body weight with consecutively for 15 day Result. The results showed a highly significant reduction in body weight (p<0.0001).  This is because aluminum has an anorectic effect contrariwise, there is no significant impact of aluminium exposure has been observed with respect to brain weight and relative brain weight respectively (p<0.912), (p<0.45). The histological study describes the alterations in the brain marked tissue necrosis and cytoplasmic vacuolations and karyopyknosis of neuronal cells of the brain. Conclusion; Aluminum is a toxic heavy metal and a ubiquitous environmental pollutant. It can alter the permeability of the blood-brain barrier and enter the brain, severely affecting the functioning of the nervous system. Keywords: Toxicity, brain, Aluminium chloride, Rats female, necrosis.


2021 ◽  
Vol 17 (2) ◽  
pp. 6-15
Author(s):  
L.A. Dziak ◽  
O.S. Tsurkalenko ◽  
K.V. Chekha ◽  
V.M. Suk

Coronavirus infection is a systemic pathology resulting in impairment of the nervous system. The involvement of the central nervous system in COVID-19 is diverse by clinical manifestations and main mechanisms. The mechanisms of interrelations between SARS-CoV-2 and the nervous system include a direct virus-induced lesion of the central nervous system, inflammatory-mediated impairment, thrombus burden, and impairment caused by hypoxia and homeostasis. Due to the multi-factor mechanisms (viral, immune, hypoxic, hypercoagulation), the SARS-CoV-2 infection can cause a wide range of neurological disorders involving both the central and peripheral nervous system and end organs. Dizziness, headache, altered level of consciousness, acute cerebrovascular diseases, hypogeusia, hyposmia, peripheral neuropathies, sleep disorders, delirium, neuralgia, myalgia are the most common signs. The structural and functional changes in various organs and systems and many neurological symptoms are determined to persist after COVID-19. Regardless of the numerous clinical reports about the neurological and psychiatric symptoms of COVID-19 as before it is difficult to determine if they are associated with the direct or indirect impact of viral infection or they are secondary to hypoxia, sepsis, cytokine reaction, and multiple organ failure. Penetrated the brain, COVID-19 can impact the other organs and systems and the body in general. Given the mechanisms of impairment, the survivors after COVID-19 with the infection penetrated the brain are more susceptible to more serious diseases such as Parkinson’s disease, cognitive decline, multiple sclerosis, and other autoimmune diseases. Given the multi-factor pathogenesis of COVID-19 resulting in long-term persistence of the clinical symptoms due to impaired neuroplasticity and neurogenesis followed by cholinergic deficiency, the usage of Neuroxon® 1000 mg a day with twice-day dosing for 30 days. Also, a long-term follow-up and control over the COVID-19 patients are recommended for the prophylaxis, timely determination, and correction of long-term complications.


1995 ◽  
Vol 198 (12) ◽  
pp. 2527-2536
Author(s):  
D R Nässel ◽  
M Y Kim ◽  
C T Lundquist

We have examined the distribution of two tachykinin-related neuropeptides, callitachykinin I and II (CavTK-I and CavTK-II), isolated from whole-animal extracts of the blowfly Calliphora vomitoria. Extracts of dissected brains, thoracic-abdominal ganglia and midguts of adult blowflies and the entire central nervous system of larval flies were analysed by high performance liquid chromatography (HPLC) combined with enzyme-linked immunosorbent assay (ELISA) for the presence of CavTKs. To identify the two neuropeptides by HPLC, we used the retention times of synthetic CavTK-I and II as reference and detection with an antiserum raised to locustatachykinin II (shown here to recognise both CavTK-I and II). The brain contains only two immunoreactive components, and these have exactly the same retention times as CavTK-I and II. The thoracic-abdominal ganglia and midgut contain immunoreactive material eluting like CavTK-I and II as well as additional material eluting later. The larval central nervous system (CNS) contains material eluting like CavTK-I and II as well as a component that elutes earlier. We conclude that CavTK-I and II are present in all assayed tissues and that additional, hitherto uncharacterised, forms of tachykinin-immunoreactive material may be present in the body ganglia and midgut as well as in the larval CNS. An antiserum was raised to CavTK-II for immunocytochemistry. This antiserum, which was found to be specific for CavTK-II in ELISA, labelled all the neurones and midgut endocrine cells previously shown to react with the less selective locustatachykinin antisera. It is not clear, however, whether CavTK-I and II are colocalised in all LomTK-immunoreactive cells since there is no unambiguous probe for CavTK-I.


Author(s):  
Peggy Mason

The primary regions and principal functions of the central nervous system are introduced through the story of Jean-Dominique Bauby who became locked in after suffering a brainstem stroke. Bauby blinked out his story of locked-in syndrome one letter at a time. The primary deficit of locked-in syndrome is in voluntary movement because pathways from the brain to motoneurons in the brainstem and spinal cord are interrupted. Perception is also disturbed as pathways responsible for transforming sensory stimuli into conscious awareness are interrupted as they ascend through the brainstem into the forebrain. Homeostasis, through which the brain keeps the body alive, is also adversely affected in locked-in syndrome because it depends on the brain, spinal cord and autonomic nervous system. Abstract functions such as memory, language, and emotion depend fully on the forebrain and are intact in locked-in syndrome, as clearly evidenced by Bauby’s eloquent words.


Sign in / Sign up

Export Citation Format

Share Document