Relationship between Molecular Structure and Mixing Mechanism

1987 ◽  
Vol 60 (1) ◽  
pp. 14-24 ◽  
Author(s):  
S. Shiga

Abstract The relationship between the molecular weight, the bound rubber, and the PI value was studied for EPR, of which the molecular structure was measured with GPC-LALLS. A strong linear correlation is found between the bound rubber and the PI value. The Meissner theorem, modified to express a severer dependence of the bound rubber on the molecular weight than the original theorem expects and the use of a molecular size instead of the molecular weight, can explain the relationship between the molecular weight and the bound rubber, accordingly the PI value. They indicate not only the dependence of mixing processability on polymer adsorption, but also strongly suggest the mechanism of carbon black dispersion that aggregates are scraped out from the surface of agglomerates as illustrated by the onion model. A pulsed NMR was used to measure the spin-spin relaxation time T2 of EPR in rubber compounds of different mixing time to study the rubber phase structure and its time change. It can be imagined from the T2-time curves that till tmin, polymer molecules are rapidly bound on the carbon black surface to become thick gradually, while adsorbed segments per a molecule increase with time. After tmin, gradual rearrangement of molecules on the surface and the biphasic structure of the bound rubber may proceed. The whole thickness of the bound rubber increases gradually even after tmin. The resistance against the dispersion of carbon black seems to be strengthened with mixing time.

1953 ◽  
Vol 26 (1) ◽  
pp. 102-114 ◽  
Author(s):  
I. M. Kolthoff ◽  
R. G. Gutmacher

Abstract The sorption capacities toward GR-S five commercial carbon blacks are in decreasing order: Spheron-6, Vulcan-1, Philblack-0, Sterling-105, Philblack-A. Apparently, the sorption is not related to surface area. The sorption on Vulcan-1 of GR-S from its solutions in seven different solvents or mixtures of solvents increases with decreasing solvent power for the rubber. The sorption curves of two “cold rubbers,” polymerized at −10 and +5° respectively, showed little difference from that of 50° GR-S. Previous heating of carbon black in nitrogen at 500 or 1100° increased the sorption by about 20 per cent over unheated carbon. Air-heating of carbon black at 425° did not cause a difference in the sorption from benzene solution, but produced an increase in the sorption of rubber from n-heptane solution. In the range 75% butadiene-25% styrene to 5% butadiene-95% styrene, there is practically no effect of the degree of unsaturation on the sorption. Polystyrene of high intrinsic viscosity exhibits a peculiar behavior with furnace blacks. Vulcan-1 sorbed microgel as well as the sol fraction from n-heptane solutions of GR-S containing microgel (conversion 74.7 and 81.5 per cent). There was no appreciable difference in the amount of sorption of rubber fractions having average molecular weights varying from 433,000 to 85,000. There is little change in the amount sorbed after two hours of shaking, but the intrinsic viscosity of the residual rubber decreases with time. The low molecular-weight rubber is sorbed more rapidly, but is slowly replaced by the more tightly sorbed high molecular weight fraction. Partial fractionation of a rubber sample can be achieved by allowing the rubber solution to flow through a column of weakly sorbing carbon black. A large portion of the sorbed rubber can be recovered from the column by washing it with a good solvent such as xylene. Bound rubber is produced by intimate mixing of equal parts of carbon black and rubber swollen in chloroform, when the mixture is dried in vacuum at 80° or at room temperature. Milling is not essential to get bound rubber.


1988 ◽  
Vol 61 (4) ◽  
pp. 609-618 ◽  
Author(s):  
George R. Cotten ◽  
Lawrence J. Murphy

Abstract The distribution of carbon black in NR/SBR blends was determined through the analysis of bound rubber. The NR/SBR blends were found to be very different from the previously studied SBR/BR compounds: these differences were assigned to mutual insolubility of the two polymers and a very high molecular weight of NR. In NR/SBR blends, it was found that changes in molecular weight of the polymer has no effect on the carbon black distribution in the blend. While the “activity” of carbon black did not affect the distribution, the loading of the black in NR decreased linearly with increasing surface area of the black. Approximately 35% of normal tread blacks (surface area 80–100 m2/g) was found in the NR phase. However, the bond between NR and carbon black is quite weak, and black continues to migrate into the SBR phase on prolonged mixing or during blending of NR and SBR masterbatches.


1970 ◽  
Vol 43 (5) ◽  
pp. 973-980 ◽  
Author(s):  
A. K. Sircar ◽  
A. Voet

Abstract Determinations have been made of the amount of elastomer unextractable from unvulcanized masticated mixes with carbon black by a given solvent at boil, expressed as immobilized elastomer. Saturated and unsaturated elastomers varying in molecular weights from 2000 to 325,000, were used, while solvents of greatly differing boiling points and solvent power were employed. It could be shown that the bonding between elastomers and carbon black is not a simple adsorption, but involves a higher energy interaction, defined as chemisorption. At successively higher temperatures elastomer is increasingly removed from the carbon black surface. The temperature Tm, obtained by extrapolation of the linear relationship between amounts immobilized and temperature of extraction, represents the temperature theoretically required to eliminate all bonds between carbon black and elastomer and is therefore indicative of the bond strength. Data suggest the existence of a bonding energy spectrum. Upon graphitization, blacks show a considerable decline in high energy bonding ability for elastomers. Saturated elastomers show less bonding than unsaturated elastomers with the same furnace black. “Bound rubber” represents the sum total of physically adsorbed, mechanically entangled, and chemisorbed elastomer. The actual values are greatly dependent upon the procedure used. “Immobilized rubber”, indicating chemisorbed elastomer, is easily determined, is not influenced by the method, and is more significant as an indicator of reinforcement.


1957 ◽  
Vol 30 (1) ◽  
pp. 157-169
Author(s):  
D. S. Villars

Abstract Theories of reinforcement may be grouped into two general classes, mechanical and chemical. The mechanical type of theory attempts to explain reinforcement by alteration of direction of tear or by mechanieal entrainment. The chemical type of theory invokes the formation of bonds between the filler and rubber. Because of its implication with respect to the latter, Fielding of Goodyear developed a “bound rubber” test. The amount of rubber bound to carbon black was defined as that unextractable from the raw masterbatch by benzene. Some ten years ago, Baker and Walker reported an insolubilization of GR-S, on mixing with carbon black, over and above the amount of naturally occurring gel. The amount of insolubilized polymer increases with increasing molecular weight of the GR-S, and a selective adsorption of the high molecular weight material was found. Since this phenomenon was obtained also in polymers where they believed chemical gelation to be impossible, the conclusion was drawn by them that it is purely physical—this notwithstanding the fact that they found that extractions at higher temperatures failed to remove the insolubilized polymer. Because the method of analysis for insolubilized polymer used by Baker and Walker was essentially a bound-rubber analysis, interest in the latter was revived and it became desirable to set up a hypothesis to explain the mechanism of bound-rubber formation. (Let us understand the term “rubber” as applying in its more general sense as synonymous with “elastomer”.) The present paper reports a theory developed by the writer about ten years ago to explain various observations on the hypothesis that bound rubber is a gel of carbon black particles, the bonding agent of which consists of the longer polymer molecules. The theory interprets the observed linear dependence of bound rubber on loading in terms of an elemental area associated with the segmental adsorption of elastomer molecules, the molecular weight of these segments, and the functionality of the carbon black particles.


1968 ◽  
Vol 41 (5) ◽  
pp. 1256-1270 ◽  
Author(s):  
Gerard Kraus ◽  
J. T. Gruver

Abstract The molecular weight dependence of the adsorption of polybutadiene on carbon black from a poor solvent, n-heptane, and bulk, i.e., the phenomenon of “bound rubber”, was investigated. For narrow distribution polymers the adsorption is proportional to Mn, where n = 0.14 for adsorption from n-heptane solution; n = 0.5 for adsorption from bulk. Anomalously low solution adsorption was observed for polymers of very high molecular weight (> 500,000). This is ascribed to a sieve effect by aggregates of carbon black particles which cannot be penetrated by the large molecular coils. In high structure blacks, which pack more loosely, and in large particle blacks, which form larger interstices between particles, onset of anomalous adsorption is shifted toward higher molecular weights.


1993 ◽  
Vol 66 (5) ◽  
pp. 772-805 ◽  
Author(s):  
J. A. Ayala ◽  
W. M. Hess ◽  
G. A. Joyce ◽  
F. D. Kistler

Abstract Carbon black morphology, surface activity and loading have been varied systematically to study the effects on an SBR formulation. The surface activity of five commercial grades of carbon black was varied by heat treating the standard grade samples at 1100°C and 1500°C in an inert atmosphere. Measurements on carbon black-elastomer interaction were based on a parameter I, defined elsewhere. The parameter I exhibited the previously reported correlation with known indicators of the surface activity of carbon blacks. The heats of adsorption by inverse gas chromatography at infinite dilution have been found useful as a measure of the carbon-black surface energy related to rubber interaction. These measurements have been employed in conjunction with carbon-black morphology and loading to develop a surface-area-modified and a surface energy-modified effective volume fraction V′ and ψ, respectively. The parameter V′ was utilized to explain the variation of the dynamic elastic modulus E′ at 1 % double strain amplitude (DSA) for all rubber compounds. The parameter ψ was used to explain the variation of E′ at 25% DSA and the factor σ in the calculation of I. The parameters V′ and ψ provide a model for the estimation of I from fundamental carbon-black morphological properties and surface energy.


2015 ◽  
Vol 294 (3) ◽  
pp. 501-511 ◽  
Author(s):  
Dina Gabriel ◽  
Alexander Karbach ◽  
Doris Drechsler ◽  
Jochen Gutmann ◽  
Karlheinz Graf ◽  
...  

Author(s):  
Olena Shafranska ◽  
Andrey Chernykh ◽  
Bret J. Chisholm ◽  
Ihor Tarnavchyk ◽  
Dean C. Webster

ABSTRACT Although soybean oil (SBO) has been used as a bio-based processing oil (PO) for rubber compounds, direct replacement of a conventional petroleum-based PO with SBO often results in a reduction of some important properties. As a result, it was of interest to investigate two higher molecular weight SBO-derived materials as POs, namely, sucrose octasoyate (SS) and poly(2-vinyloxyethyl)soyate (P2VOES). When these compounds were used in carbon black (CB)-filled SBR, mechanical properties were significantly improved. This result was mainly attributed to higher crosslink densities resulting from their higher degree of unsaturation per molecule as compared with SBO. Higher unsaturation per molecule increases the probability that the PO will be incorporated into the crosslinked network as elastically effective crosslinks as opposed to dangling chain ends. With regard to tire tread performance, both SS and P2VOES-based vulcanizates showed a lower predicted rolling resistance than the SBO-based control, and the P2VOES vulcanizate showed a better balance between rolling resistance and wet traction. Vulcanizates derived from SS and P2VOES showed a small tangent delta peak between −13 and 35 °C that might be associated with relatively highly crosslinked domains rich in SS or P2VOES.


1962 ◽  
Vol 35 (3) ◽  
pp. 599-610 ◽  
Author(s):  
Oliver Dessewffy

Abstract The change in quantity of rubber gel with the concentration of carbon black in filled natural rubber compounds was studied. It was established that there is a linear relationship between the amount of rubber gel and the black concentration, within a range of 20 to 80 parts of black to 100 parts by weight of rubber. No clear-cut relation exists between the quantities of rubber gel or the constants for the linear relations and the physicomechanical properties of the vulcanizates. The factors upon which the amount of bound rubber depend, i.e., the degree of degradation of the rubber, the heat treatment of the mixtures and the extraction temperature, do not alter the linear character of the cited relation. The critical concentration of certain types of blacks was determined. Up to this concentration no coherent rubber/black gel system is formed. The critical values for the black concentration are clearly related to some of the elastic properties of the filled vulcanizate.


Sign in / Sign up

Export Citation Format

Share Document