scholarly journals Comparative chemical profiling and antimicrobial activity of Nigella sativa seeds oils obtained from different sources

2022 ◽  
Author(s):  
Fatima Tahir ◽  
Mubo Sonibare ◽  
Sakina Yagi

<i>Nigella sativa</i> L. seeds are widely used in Sudan as a spice, food preservative, and medicine. Sudan does not grow the plant. The study aimed to compare the chemical profile and antibacterial activity of fixed and essential oils of <i>N. sativa</i> from Ethiopian and Indian seeds and the oil offered by Attarin in the local market. A Soxhlet device extracted fixed oils and hydrodistillation to obtain essential oils and analysed their oil profile using GC-MS. Disk diffusion was used to test antimicrobial activity. The fixed oil of Ethiopian (EFO) and Indian (IFO) seeds contained ten components, with linoleic acid (50.12% in EFO and 57.69% in IFO) being the most abundant. Ethiopian seeds were used to extract the essential oil. 51.96% of the oil was hydrogenated monoterpenes. The main chemicals were p-cymene (36.76%) and thymoquinone (18.70%). There were fixed and essential oils in the Attarin oil sample. The main component was linoleic acid (14.61%), followed by p-cymene (13.85%). The maximum antibacterial activity (MIC 6.25 µg/disc) was seen in both fixed and liquid oil samples against Escherichia coli and Pseudomonas aeruginosa. The best anti-<i>P. aeruginosa</i> action was attarin oil (MIC 12.5 µg/disc). Finally, the Sudanese market needs to standardise <i>N. sativa</i> seeds and oil.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


2018 ◽  
Vol 6 (4) ◽  
pp. 122 ◽  
Author(s):  
Fahad Aldoghaim ◽  
Gavin Flematti ◽  
Katherine Hammer

Essential oils from the Western Australian (WA) Eucalyptus mallee species Eucalyptus loxophleba, Eucalyptus polybractea, and Eucalyptus kochii subsp. plenissima and subsp. borealis were hydrodistilled from the leaves and then analysed by gas chromatography–mass spectrometry in addition to a commercial Eucalyptus globulus oil and 1,8-cineole. The main component of all oils was 1,8-cineole at 97.32% for E. kochii subsp. borealis, 96.55% for E. kochii subsp. plenissima, 82.95% for E. polybractea, 78.78% for E. loxophleba 2, 77.02% for E. globulus, and 66.93% for E. loxophleba 1. The Eucalyptus oils exhibited variable antimicrobial activity determined by broth microdilution, with E. globulus and E. polybractea oils showing the highest activities. The majority of microorganisms were inhibited or killed at concentrations ranging from 0.25% to 8.0% (v/v). Enterococcus faecalis and Candida albicans were the least susceptible organisms, whilst Acinetobacter baumannii was the most sensitive. In conclusion, all oils from WA Eucalyptus species showed microorganism inhibitory activity, although this varied according to both the Eucalyptus species and the microorganism tested. These data demonstrate that WA Eucalyptus oils show activity against a range of medically important pathogens and therefore have potential as antimicrobial agents.


2019 ◽  
Vol 6 (2) ◽  
pp. 181
Author(s):  
Laila Nur Rohma ◽  
Laila Nur Rohma ◽  
Osfar Sjofjan ◽  
M. Halim Natsir

ABSTRAK                                                                        Imbuhan pakan unggas dapat berasal dari bahan herbal yang mengandung berbagai komponen aktif yang bermanfaat bagi pertumbuhan ternak.Temu putih dan jahe gajah dapat dimanfaatkan sebagai imbuhan pakan karena mengandung minyak atsiri yang dapat berperan sebagai agen antibakteri. Penelitian ini bertujuan untuk mengetahui komponen penyusun minyak atsiri dan aktivitas antimikroba pada rimpang temu putih dan jahe gajah. Penelitian dilakukan dengan percobaan in vitro menggunakan temu putih dan jahe gajah yang diolah menjadi bentuk ekstrak minyak atsiri temu putih dan jahe gajah sebagai materi uji komposisi penyusun minyak atsiri serta bentuktepung dan enkapsulasi sebagai materi uji aktivitas antimikroba. Komposisi minyak atsiri temu putih terdiri dari lima komponen penyusun dengan cis-1,7-octadien-3-yl acetat sebagai komponen utama. Komposisi minyak atsiri jahe gajah terdiri dari tujuh komponen dan benzene,1-(1,5-dimethyl-4-hexenyl)-4-methyl-(CAS) ar-curcumene sebagai komponen utama. Minyak atsiri yang terkandung pada temu putih dan jahe gajah mempunyai peran dalam menghambat mikroba. Uji komposisi penyusun minyak atsiri menggunakan alat GC-MS dan uji aktivitas antimikroba menggunakan metode disc diffusion dan. Hasil dari uji aktivitas antimikroba menunjukkan bahwa temu putih dan jahe gajah dalam bentuk tepung dan enkapsulasi memiliki perbedaan yang sangat nyata (P<0,01) terhadap aktivitas antimikroba pada bakteri asam laktat, Escherichia coli dan Salmonella sp. Campuran temu putih dan jahe gajah (1:1) menunjukkan kemampuan terbaik dalam menghambat pertumbuhan bakteri patogen dengan diameter zona hambat 5,70±0,14 mm  (Escherichia coli) dan 6,88±0,45 mm (Salmonella sp.).Kata Kunci : antimikroba, fitobiotik, jahe gajah, minyak atsiri, temu putihABSTRACTThe poultry feed additives can contain herbal ingredients that contain various beneficial components for livestock growth. White turmeric and giant ginger can be used as feed additives because they contain essential oils that can be used as antibacterial agents. This study aims to determine the constituent components of essential oils and antimicrobial activity in white turmeric and giant ginger rhizomes. The study was carried out by in vitro experiments using white turmeric and giant ginger which were processed into the form of essential oil extract as material for the composition of essential oils test, and powder and encapsulation form as antimicrobial activity test material. The composition of essential oils of white turmeric consists of five constituent components with cis-1,7-octadien-3-yl acetate as the main component. The composition of giant ginger essential oil consists of seven components with benzene, 1- (1,5-dimethyl-4-hexenyl) -4-methyl- (CAS) ar-curcumene as the main component. Essential oils contained in the white turmeric and giant ginger have a role in inhibiting microbes. The composition of the essential oil tested using GC-MS and the antimicrobial activity test used the disc diffusion method. The results of the antimicrobial activity test showed that white turmeric and giant ginger in powder and encapsulation form had significant differences (P <0.01) on antimicrobial activity in lactic acid bacteria, Escherichia coli and Salmonella sp. The mixture of white turmeric and giant ginger (1: 1) showed the best ability to inhibit the growth of pathogenic bacteria with inhibitory zone diameters of 5.70 ± 0.14 mm (Escherichia coli) and 6.88 ± 0.45 mm (Salmonella sp.).Keywords: antimicrobial, essential oil, giant ginger, phytobiotic, white turmeric


2018 ◽  
Vol 23 ◽  
pp. 2515690X1775131 ◽  
Author(s):  
Farhad Sharafati Chaleshtori ◽  
Mohamad Saholi ◽  
Reza Sharafati Chaleshtori

This research was aimed at investigating the antioxidant and antibacterial activity of Bunium persicum, Eucalyptus globulus, and rose water on multidrug-resistant Listeria species. The antibiotic resistance of Listeria spp obtained from seafood samples were determined by the Kirby-Bauer method. The antioxidant and antibacterial activity of the essential oils and extracts were evaluated using ferric reducing antioxidant power and microdilution methods, respectively. A total 2 samples (1.88%) were positive for Listeria spp. L monocytogenes was found to be resistant to ampicillin, amoxicillin/clavulanic acid, penicillin, vancomycin, and kanamycin. B persicum essential oil showed the greatest antioxidant activity (248.56 ± 1.09 µM Fe2+/g). The E globulus essential oil showed consistently strong antimicrobial activity against L monocytogenes and L grayi, while rose water showed no antimicrobial activity against any of the tested bacterial strains. The results showed that after adding the B persicum and E globulus essential oils to bacteria, the cell components’ release increased significantly.


2009 ◽  
Vol 4 (8) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Huguette Agnaniet ◽  
Thomas Makani ◽  
Raphaël Bikanga ◽  
Louis Clément Obame ◽  
Jacques Lebibi ◽  
...  

The chemical composition of the essential oils obtained by hydrodistillation from air dried leaves, bark and roots of Glossocalyx staudtii Engl. grown in Gabon was analyzed by GC and GC-MS. The essential oil content was 0.84% (w/w), 0.28% (w/w), and 0.74% (w/w), respectively. The leaf oil was characterized by a high content of monoterpene hydrocarbons (64.8%), with β-pinene (30.6%) and α-pinene (22.6%) as the major constituents. The oil obtained from the bark contained 30.5% of oxygenated monoterpenes with cryptone as the main constituent (11.5%) and 28.9% of aliphatic compounds, with 9.3% of 2-tridecanone; in the roots oil, the main component was 2-tridecanone (55.2%). The antimicrobial activity of the oils was studied by means of the agar disc diffusion and broth microdilution methods. The Gram positive bacteria were the most sensitive to the essential oils. A significant anticandidal effect of the bark essential oil was observed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mohammed Dalli ◽  
Salah-eddine Azizi ◽  
Hind Benouda ◽  
Ali Azghar ◽  
Maroua Tahri ◽  
...  

Nigella sativa L. (NS) and its volatile compounds are well known for their broad spectrum of effects. This study aimed to investigate the variability of the chemical composition and the in vitro antibacterial activity of five essential oils (Eos) originated from Morocco, Saudi Arabia, Syria, India, and France. These five samples were grown under different edaphic and climatic conditions. The agar diffusion method and microdilution method in 96-well plates were used to test the sensitivity of multidrug-resistant strains clinically isolated from patients (methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii), for the determination of the minimum inhibitory concentration and bactericidal concentration. Among all the investigated Eos, the monoterpenes were highly present in the chemical composition. Moroccan, Saudi Arabian, and Syrian seeds were characterized by the presence α-phellandrene (20.03–30.54%), β-cymene (12.31–23.82 %), and 4−caranol (9.77–14.27%). The Indian seeds were rich with 4-caranol (18.81%), β-cymene (14.22%), α-phellandrene (10.58%), and β-chamigrene (9.54%), while France NS was rich with estragole (20.22%) and D-limonene (14.63%). The minimum inhibitory (MIC) and bactericidal concentration (MBC) obtained for the four Eos (with the exception of France because of the low yield) tested were ranging from 3 to 40 μl/ml. Gram-positive (+) bacteria were slightly sensitive to the Eos tested than the Gram-negative (−) bacteria. The results of this study showed that the Eos of NS seeds show interesting antibacterial activity which could be associated to the existence of different bioactive compounds. Indeed, these compounds can be used for preventive or curative purposes in the face of the noncontrolled emergence of resistance to antibiotics.


Author(s):  
PURIT PATTANAPANIT ◽  
SUNISA MITHONGLANG ◽  
SUNITA MITHONGLANG ◽  
SURACHAI TECHAOEI

Objective: The objective of this study was to evaluate the antimicrobial activity of volatile oils from aromatic plants against pathogenic bacteria.Methods: Thai aromatic plants such as Pogostemon cablin (Blanco) Benth (Patchouli oil), Cymbopogon nardus Rendle (Citronella grass oil), Pelargoniumroseum (Geranium oil), Syzygium aromaticum (L.) Merrill and Perry (clove oil), Cinnamomum spp.(cinnamon oil), and Cymbopogon citratus (DC.) Stapf.(lemongrass oil) were selected. Essential oils were obtained by water distillation and were stored at 4°C until use. Five human pathogenic bacteria wereobtained from Thai traditional Medicine College, Rajamangala University of Technology, Staphylococcus epidermidis, Escherichia coli, Staphylococcusaureus, methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa. The antibacterial activity of volatile oils was determined by disc-diffusionassay. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each essential oil were determined.Results: Our study showed that 10% of essential oil from Cinnamomum spp. was the most potential against S. aureus, MRSA, and E. coli when assayedby disc-diffusion method with inhibition zones ranging from 37.66±0.57 to 45.33±1.15 mm and from 29.33±0.57 to 36.00±1.00 for lemongrass oilwith MIC and MBC of 1.25%.Conclusion: From this study, it can be concluded that some essential oils have potential antibacterial activity. The present investigation providessupport to the antibacterial properties of essential oils and will be applied to health-care product as aroma antibacterial products.


2006 ◽  
Vol 1 (5) ◽  
pp. 1934578X0600100
Author(s):  
Andreza Maria L. Pires ◽  
Maria Rose Jane R. Albuquerque ◽  
Edson P. Nunes ◽  
Vânia M. M. Melo ◽  
Edilberto R. Silveira ◽  
...  

The essential oils of Blainvellea rhomboidea (Asteraceae) were obtained by hydrodistillation and analyzed by GC/MS and GC/FID. Initially, the essential oil from the aerial parts was investigated. From the 18 identified components, 5-indanol (14.5%) followed by p-cymen-8-ol (10.1%), β-caryophyllene (9.6%), caryophyllene oxide (9.6%), limonene (8.6%), terpinolene (7.8%), and spathulenol (7.7%) were the major constituents. The oil was tested against seven bacterial strains and the results showed significant antimicrobial activity. As a consequence, the essential oils from leaves and from flowers were analyzed separately. The major constituents of the leaf oil were terpinolene (21.2%), β-caryophyllene (19.2%), spathulenol (9.1%), caryophyllene oxide (7.4%), and bicyclogermacrene (7.1%), while the oil of the flowers contained terpinolene (28.1%), 5-indanol (16.3%), p-cymen-8-ol (15.3%) and limonene (14.7%) as prevalent compounds. The oils were tested against the same bacterial strains and the flower oil was the more active. These results indicated that the components of the essential oil from flowers seem to be responsible for the activity.


10.3823/819 ◽  
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Fatima El Malki ◽  
Kamal Eddaraji ◽  
Rajae Alloudane ◽  
Hassane Greche ◽  
Haiat Essalmani ◽  
...  

Introduction: Medicinal plants are plentiful of bioactive molecules effective against multi-resistance bacteria. The aims of this study were to assess the in vitro antimicrobial activities of essential oils extracted from three Moroccan aromatic plants. Methodology: Analysis of essential oils of Origanum compactum, Rosmarinus officinalis and Pelargonium asperum, collected from different localities in Morocco, were performed using a GC-MS spectrophotometry. Antibacterial activity was evaluated in vitro for five clinical multi-resistant isolates. Results: Origanum showed strong antibacterial activity against tested strains except Pseudomonas aeruginosa while Rosmarinum showed a bactericidal effect against Acinetobacter baumanii, Escherichia coli and Staphylococcus aureus. Pelargonium presented only slight growth inhibition of Staphylococcus aureus on solid medium, but provided bactericidal effect against Acinetobacter baumanii and Staphylococcus aureus. Interestingly, fractions F7 and F8 of Pelargonium which represented only 0.3% and 0.1% of the total mass were found bactericidal respectively against Klebsiella pneumoniae and Pseudomonas aeruginosa. Conclusions: Ours results showed that the antimicrobial activities were variables depending on the chemical composition of essential oils, the fraction used and the microorganism tested.Essential oils fractionation allows detection of bioactive substances, especially those owning antimicrobial activity, present in small quantities.


Author(s):  
F.Moukhfi N.Chadli

Abstract- Poultry is the host of many species of bacteria and the intestine is the privileged place of their colonization and their persistence. These bacteria are the cause of several cases of food poisoning in humans through the consumption of eggs or soiled chicken meat. In addition, these bacteria develop resistance to antibiotics that are adjusted to poultry feed as growth promoters. Essential oils are considered as important secondary metabolites for plant defense by their antimicrobial and antioxidant properties. These essential oils may be considered as a source of natural antimicrobials for the conservation of poultry food. The aim of our study is to isolate and identify bacterial strains isolated from poultry and to determine the antibacterial and antioxidant activities of Rosmarinus officinalis and Lavandula angustifolia essential oils on these bacterial strains.Essential oils of Moroccan Rosmarinus officinalis and Lavandula angustifolia were extracted by hydrodistillation. The identification of their chemical composition are performed by gas chromatography-mass spectrometry. Antimicrobial activity of extracted essential oils against Staphylococcus aureus, Clostridium perfringens, Escherichia coli and Salmonella entiritidis was evaluated by aromatogram test and Microdilution in a liquid medium. The identification of strains are performed by several test: Gram staining, Kligler test, Catalase test, test Mobility and Api Gallery 20E. The results show that essential oils tested have a considerable antibacterial activity against all isolated bacterial strains. Keywords: Poultry feed, Essential oils, Bacterial strains, Antibiotic resistance, Antimicrobial activity.


Sign in / Sign up

Export Citation Format

Share Document