scholarly journals Susceptibility and virulence profile of Escherichia coli pathotypes isolated from diarrheic and non-diarrheic calves

2021 ◽  
Vol 42 (2) ◽  
pp. 695-706
Author(s):  
Juliana da Silva Menezes Azola ◽  
◽  
Marita Vedovelli Cardozo ◽  
Bianca de Souza Moreira ◽  
Gabriel Michelutti do Nascimento ◽  
...  

Neonatal diarrhea is amongst the most frequent diseases affecting calves, leading to damages in milk production. Although Escherichia coli is a commensal microorganism in the gastrointestinal tract, some pathotypes are known to cause high prevalence of diarrhea and food poisoning. The rapidly increasing resistance of bacteria to antimicrobials leads to the research in new, alternative treatment options. The present study aimed at the detection of E. coli pathotypes in newborn diarrheic and non-diarrheic calves, as well as susceptibility tests for antimicrobials and vegetal extracts. Samples were collected from animals located in dairy farms in the state of Minas Gerais, Brazil. The samples were sent for microbiological isolation, genetic identification using PCR and antimicrobial tests. A total of 35 strains from diarrheic animals tested positive for at least one of the virulence genes analyzed: stx1, stx2, eae, bfp and sta. As for the non-diarrheic animals, 9 isolated strains possessed one of or both stx1 and stx2 genes, classifying these non-diarrheic cattle as reservoirs for the STEC pathotype and possible biological vectors of this pathogen. Regarding the susceptibility tests, most isolates displayed resistance to multiple antimicrobial classes. Among the vegetal extracts tested, all isolates tested sensitive to the active ingredient of Salvia officinalis L. (sage). Showcasing an alternative tool to aid in the treatment of pathogenic bacteria.

1998 ◽  
Vol 36 (6) ◽  
pp. 1604-1607 ◽  
Author(s):  
L. H. Wieler ◽  
Anja Schwanitz ◽  
Elke Vieler ◽  
Barbara Busse ◽  
H. Steinrück ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) strains of serogroup O118 are the most prevalent group among STEC strains in diarrheic calves in Germany (L. H. Wieler, Ph.D. thesis, University of Giessen, 1997). To define their virulence properties, 42 O118 (O118:H16 [n = 38] and O118:H− [n = 4]) strains were characterized. The strains displayed three different Stx combinations (Stx1 [36 of 42], Stx1 and Stx2 [2 of 42], and Stx2 [4 of 42]). A total of 41 strains (97.6%) harbored a large virulence-associated plasmid containinghly EHEC (hly from enterohemorrhagicE. coli). The strains’ adhesive properties varied in relation to the eukaryotic cells tested. Only 28 of 42 strains (66.7%) showed localized adhesion (LA) in the human HEp-2 cell line. In contrast, in bovine fetal calf lung (FCL) cells, the number of LA-positive strains was much higher (37 of 42 [88.1%]). The locus of enterocyte effacement (LEE) was detected in 41 strains (97.6%). However, not all LEE-positive strains reacted positively in the fluorescence actin-staining (FAS) test, which indicated the attaching and effacing (AE) lesion. In HEp-2 cells, only 22 strains (52.4%) were FAS positive, while in FCL cells, the number of FAS-positive strains was significantly higher (38 of 42 [90.5%; P < 0.001]). In conclusion, the vast majority of the O118 STEC strains from calves (41 of 42 [97.6%]) have a high virulence potential (stx, hly EHEC, and LEE). This virulence potential and the high prevalence of STEC O118 strains in calves suggest that these strains could be a major health threat for humans in the future. In addition, the poor association between results of the geno- and phenotypical tests to screen for the AE ability of STEC strains calls the diagnostic value of the FAS test into question.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Chunyan Feng ◽  
Peipei Wen ◽  
Hao Xu ◽  
Xiaohui Chi ◽  
Shuang Li ◽  
...  

ABSTRACT The aim of this study was to investigate the occurrence and genomic characteristics of extended-spectrum-β-lactamase-producing Escherichia coli (ESBL-EC) in fennec fox imported from Sudan to China. We screened 88 fecal samples from fennec fox for ESBL-EC, using cefotaxime- and meropenem-supplemented selective medium. Antimicrobial susceptibility testing was performed by the agar dilution method except for colistin and tigecycline; for colistin and tigecycline, testing was conducted by the broth microdilution method. ESBL-EC bacteria were sequenced, and their genomes were characterized. Plasmid conjugation, S1 nuclease pulsed-field gel electrophoresis (PFGE), and Southern blotting were performed for a MCR-1-producing isolate. The genetic environment of mcr-1 and ESBL genes was also investigated. A total of 29 ESBL-EC bacteria were isolated from 88 fennec fox (32.9%), while no carbapenemase producers were found. The most prevalent genotypes were the blaCTX-M-55 and blaCTX-M-14 genes, followed by blaCTX-M-15 and blaCTX-M-64. We detected nine sequence types among 29 ESBL-EC. Furthermore, the mcr-1 gene was detected in isolate EcFF273. Conjugation analysis confirmed that the mcr-1 gene was transferable. S1 PFGE, Southern blotting, and whole-genome sequencing revealed that mcr-1 and blaCTX-M-64 were both located on a 65-kb IncI2 plasmid. This study reports for the first time the occurrence of ESBL-EC in fennec fox. The high prevalence of ESBL producers and the occurrence of MCR-1 producer in fennec fox imported into China from Sudan are unexpected. In addition, it clearly demonstrated that commensal E. coli strains can be reservoirs of blaCTX-M and mcr-1, potentially contributing to the dissemination and transfer of such genes to pathogenic bacteria among fennec fox. Our results support the implication of fennec fox as a biological vector for ESBL-producing members of the Enterobacteriaceae family. IMPORTANCE The extended-spectrum-β-lactamase (ESBL)-producing members of the Enterobacteriaceae family are a global concern for both animal and human health. There is some information indicating a high prevalence of ESBL producers in food animals. Moreover, there have been an increasing number of reports on ESBL-producing strains resistant to the last-resort antibiotic colistin with the global dissemination of the plasmid-mediated mcr-1 gene, which is believed to have originated in animal breeding. However, little is known regarding the burden of ESBL-producing Enterobacteriaceae on wild animals. No data were available on the prevalence of antimicrobial resistance (AMR) among wild animals imported into China. This is the first study to investigate the microbiological and genomics surveillance investigation of ESBL colonization among fennec fox (Vulpes zerda) imported from Sudan to China, and we uncovered a high prevalence of ESBL-EC. Furthermore, the underlying mechanism of colistin resistance in an isolate that harbored mcr-1 was also investigated. Results of characterization and analysis of 29 ESBL-producing E. coli may have important implications on our understanding of the transmission dynamics of these bacteria. We emphasize the importance of improved multisectoral surveillance for colistin-resistant E. coli in this region.


2021 ◽  
Vol 22 (11) ◽  
pp. 5905
Author(s):  
Olivia M. Grünzweil ◽  
Lauren Palmer ◽  
Adriana Cabal ◽  
Michael P. Szostak ◽  
Werner Ruppitsch ◽  
...  

Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Chibuzor M. Nsofor ◽  
Mirabeau Y. Tattfeng ◽  
Chijioke A. Nsofor

Abstract Background This study was aimed to determine the prevalence of qnr genes among fluoroquinolone-resistant Escherichia coli (FREC) isolates from Nigeria. Antimicrobial susceptibility testing was performed by disc diffusion technique. Polymerase chain reaction was used to identify Escherichia coli (E. coli) and for the detection of qnr genes. Results A total of 206 non-duplicate E. coli were isolated from 300 clinical specimens analyzed. In all, 30 (14.6%) of these isolates were FREC; the resistance to fluoroquinolones among these 30 FREC showed 80% (24), 86.7% (26), 86.7% (26), 100% (30), 86.7% (26), 93.3% (28) and 86.7% (26) were resistant to pefloxacin, ciprofloxacin, sparfloxacin, levofloxacin, nalidixic acid, ofloxacin and moxifloxacin, respectively. The distribution of FREC among the various sample sources analyzed showed that 14%, 10%, 13.3%, 16.7% and 20% of the isolates came from urine, stool, high vaginal swab, endo cervical swab and wound swab specimens, respectively. More FREC were isolated from female samples 73.3% (22) compared to male samples 26.7% (8) and were more prevalent among the age group 26–35 years (40%). Twenty eight out of the 30 (93.3%) FREC isolates possessed at least one fluoroquinolone resistance gene in the form of qnrA 10 (33.3%) and qnrB 18 (60%), respectively; qnrS was not detected among the FREC isolates analyzed and 13.5% of the isolates possessed both the qnrA and qnrB genes. Phylogenetic analysis showed that these isolates were genetically diverse. Conclusions These findings suggest a possible resistance to fluoroquinolone is of high interest for better management of patients and control of antimicrobial resistance in Nigeria.


2020 ◽  
Vol 367 (22) ◽  
Author(s):  
Chris Coward ◽  
Gopujara Dharmalingham ◽  
Omar Abdulle ◽  
Tim Avis ◽  
Stephan Beisken ◽  
...  

ABSTRACT The use of bacterial transposon mutant libraries in phenotypic screens is a well-established technique for determining which genes are essential or advantageous for growth in conditions of interest. Standard, inactivating, transposon libraries cannot give direct information about genes whose over-expression gives a selective advantage. We report the development of a system wherein outward-oriented promoters are included in mini-transposons, generation of transposon mutant libraries in Escherichia coli and Pseudomonas aeruginosa and their use to probe genes important for growth under selection with the antimicrobial fosfomycin, and a recently-developed leucyl-tRNA synthase inhibitor. In addition to the identification of known mechanisms of action and resistance, we identify the carbon–phosphorous lyase complex as a potential resistance liability for fosfomycin in E. coli and P. aeruginosa. The use of this technology can facilitate the development of novel mechanism-of-action antimicrobials that are urgently required to combat the increasing threat worldwide from antimicrobial-resistant pathogenic bacteria.


2015 ◽  
Vol 78 (9) ◽  
pp. 1738-1744 ◽  
Author(s):  
MICHAEL KNOWLES ◽  
DOMINIC LAMBERT ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER ◽  
BURTON W. BLAIS

Control strains of bacterial pathogens such as Escherichia coli O157:H7 are commonly processed in parallel with test samples in food microbiology laboratories as a quality control measure to assure the satisfactory performance of materials used in the analytical procedure. Before positive findings can be reported for risk management purposes, analysts must have a means of verifying that pathogenic bacteria (e.g., E. coli O157:H7) recovered from test samples are not due to inadvertent contamination with the control strain routinely handled in the laboratory environment. Here, we report on the application of an in-house bioinformatic pipeline for the identification of unique genomic signature sequences in the development of specific oligonucleotide primers enabling the identification of a common positive control strain, E. coli O157:H7 (ATCC 35150), using a simple PCR procedure.


2001 ◽  
Vol 8 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Ulla Niewerth ◽  
Andreas Frey ◽  
Thomas Voss ◽  
Chantal Le Bouguénec ◽  
Georg Baljer ◽  
...  

ABSTRACT Pathogenic Escherichia coli strains are known to cause edema disease (ED) and postweaning diarrhea (PWD) in piglets. Although the exact mechanisms of pathogenicity that lead to ED-PWD remain to be elucidated, E. coli-borne Shiga-like toxin and adhesion-mediating virulence factors such as F18 adhesin or F4 fimbriae are believed to play a central role in ED-PWD. In light of these observations we investigated whether another E. coliadhesin, the plasmid-encoded AIDA (adhesin involved in diffuse adherence) might also be present in ED-PWD-causing E. coli isolates. For rapid screening for the AIDA system in large numbers of isolates, a multiplex PCR method along with a duplex Western blot procedure was developed. When screening 104 strains obtained from pigs with or without ED-PWD, we observed a high prevalence of the AIDA operon in porcine E. coli isolates, with over 25% of all strains being AIDA positive, and we could demonstrate a significant association of the intact AIDA gene (orfB) with ED-PWD, while defects in orfB were associated with the absence of disease. Although our data hint toward a contribution of AIDA to ED-PWD, further studies will be necessary since the presence of the AIDA genes was also associated with the presence of the Shiga-like toxin and F18 adhesin genes, two reported virulence factors for ED-PWD.


1980 ◽  
Vol 29 (2) ◽  
pp. 417-424
Author(s):  
Zvi Bar-Shavit ◽  
Rachel Goldman ◽  
Itzhak Ofek ◽  
Nathan Sharon ◽  
David Mirelman

Recently, it was suggested that a mannose-specific lectin on the bacterial cell surface is responsible for the recognition by phagocytic cells of certain nonopsonized Escherichia coli strains. In this study we assessed the interaction of two strains of E. coli at different phases of growth with a monolayer of mouse peritoneal macrophages and developed a direct method with [ 14 C]mannan to quantitate the bacterial mannose-binding activity. Normal-sized bacteria were obtained from logarithmic and stationary phases of growth. Nonseptated filamentous cells were formed by growing the organisms in the presence of cephalexin or at a restrictive temperature. Attachment to macrophages of all bacterial forms was inhibited by methyl α- d -mannoside and mannan but not by other sugars tested. The attachment of stationary phase and filamentous bacteria to macrophages, as well as their mannose-binding activity, was similar, whereas in the exponential-phase bacteria they were markedly reduced. The results show a linear relation between the two parameters ( R = 0.98, P < 0.001). The internalization of the filamentous cells attached to macrophages during 45 min of incubation was much less efficient (20%) compared to that of exponential-phase, stationary-phase, or antibody-coated filamentous bacteria (90%). The results indicate that the mannose-binding activity of E. coli determines the recognition of the organisms by phagocytes. They further suggest that administration of β-lactam antibiotics may impair elimination of certain pathogenic bacteria by inducing the formation of filaments which are inefficiently internalized by the host's phagocytic cells.


2006 ◽  
Vol 188 (17) ◽  
pp. 6326-6334 ◽  
Author(s):  
Sergei Korshunov ◽  
James A. Imlay

ABSTRACT Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


Sign in / Sign up

Export Citation Format

Share Document