Gene Expression and Functional Genomic Approach for abiotic stress tolerance in different crop species

Author(s):  
Qurban Ali ◽  
Muhammad Ahsan ◽  
Muhammad Waseem ◽  
Muhammad Tahir ◽  
Jehanzeb Farooq ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rasmita Rani Das ◽  
Seema Pradhan ◽  
Ajay Parida

AbstractScreening the transcriptome of drought tolerant variety of little millet (Panicum sumatrense), a marginally cultivated, nutritionally rich, susbsistent crop, can identify genes responsible for its hardiness and enable identification of new sources of genetic variation which can be used for crop improvement. RNA-Seq generated ~ 230 million reads from control and treated tissues, which were assembled into 86,614 unigenes. In silico differential gene expression analysis created an overview of patterns of gene expression during exposure to drought and salt stress. Separate gene expression profiles for leaf and root tissue revealed the differences in regulatory mechanisms operating in these tissues during exposure to abiotic stress. Several transcription factors were identified and studied for differential expression. 61 differentially expressed genes were found to be common to both tissues under drought and salinity stress and were further validated using qRT-PCR. Transcriptome of P. sumatrense was also used to mine for genic SSR markers relevant to abiotic stress tolerance. This study is first report on a detailed analysis of molecular mechanisms of drought and salinity stress tolerance in a little millet variety. Resources generated in this study can be used as potential candidates for further characterization and to improve abiotic stress tolerance in food crops.


AoB Plants ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Komivi Dossa ◽  
Marie A Mmadi ◽  
Rong Zhou ◽  
Aili Liu ◽  
Yuanxiao Yang ◽  
...  

Abstract An increasing number of candidate genes related to abiotic stress tolerance are being discovered and proposed to improve the existing cultivars of the high oil-bearing crop sesame (Sesamum indicum L.). However, the in planta functional validation of these genes is remarkably lacking. In this study, we cloned a novel sesame R2-R3 MYB gene SiMYB75 which is strongly induced by drought, sodium chloride (NaCl), abscisic acid (ABA) and mannitol. SiMYB75 is expressed in various sesame tissues, especially in root and its protein is predicted to be located in the nucleus. Ectopic over-expression of SiMYB75 in Arabidopsis notably promoted root growth and improved plant tolerance to drought, NaCl and mannitol treatments. Furthermore, SiMYB75 over-expressing lines accumulated higher content of ABA than wild-type plants under stresses and also increased sensitivity to ABA. Physiological analyses revealed that SiMYB75 confers abiotic stress tolerance by promoting stomatal closure to reduce water loss; inducing a strong reactive oxygen species scavenging activity to alleviate cell damage and apoptosis; and also, up-regulating the expression levels of various stress-marker genes in the ABA-dependent pathways. Our data suggested that SiMYB75 positively modulates drought, salt and osmotic stresses responses through ABA-mediated pathways. Thus, SiMYB75 could be a promising candidate gene for the improvement of abiotic stress tolerance in crop species including sesame.


2020 ◽  
Vol 21 (5) ◽  
pp. 1790 ◽  
Author(s):  
Ronan C. Broad ◽  
Julien P. Bonneau ◽  
Roger P. Hellens ◽  
Alexander A.T. Johnson

Abiotic stresses, such as drought, salinity, and extreme temperatures, are major limiting factors in global crop productivity and are predicted to be exacerbated by climate change. The overproduction of reactive oxygen species (ROS) is a common consequence of many abiotic stresses. Ascorbate, also known as vitamin C, is the most abundant water-soluble antioxidant in plant cells and can combat oxidative stress directly as a ROS scavenger, or through the ascorbate–glutathione cycle—a major antioxidant system in plant cells. Engineering crops with enhanced ascorbate concentrations therefore has the potential to promote broad abiotic stress tolerance. Three distinct strategies have been utilized to increase ascorbate concentrations in plants: (i) increased biosynthesis, (ii) enhanced recycling, or (iii) modulating regulatory factors. Here, we review the genetic pathways underlying ascorbate biosynthesis, recycling, and regulation in plants, including a summary of all metabolic engineering strategies utilized to date to increase ascorbate concentrations in model and crop species. We then highlight transgene-free strategies utilizing genome editing tools to increase ascorbate concentrations in crops, such as editing the highly conserved upstream open reading frame that controls translation of the GDP-L-galactose phosphorylase gene.


2021 ◽  
Vol 7 (21) ◽  
pp. eabd9296
Author(s):  
Rafael Catalá ◽  
Rosa López-Cobollo ◽  
M. Álvaro Berbís ◽  
Jesús Jiménez-Barbero ◽  
Julio Salinas

Trimethylamine N-oxide (TMAO) is a well-known naturally occurring osmolyte in animals that counteracts the effect of different denaturants related to environmental stress and has recently been associated with severe human chronic diseases. In plants, however, the presence of TMAO has not yet been reported. In this study, we demonstrate that plants contain endogenous levels of TMAO, that it is synthesized by flavin-containing monooxygenases, and that its levels increase in response to abiotic stress conditions. In addition, our results reveal that TMAO operates as a protective osmolyte in plants, promoting appropriate protein folding and as an activator of abiotic stress–induced gene expression. Consistent with these functions, we show that TMAO enhances plant adaptation to low temperatures, drought, and high salt. We have thus uncovered a previously unidentified plant molecule that positively regulates abiotic stress tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Renée L. Eriksen ◽  
Lillian K. Padgitt-Cobb ◽  
M. Shaun Townsend ◽  
John A. Henning

AbstractHops are valued for their secondary metabolites, including bitter acids, flavonoids, oils, and polyphenols, that impart flavor in beer. Previous studies have shown that hop yield and bitter acid content decline with increased temperatures and low-water stress. We looked at physiological traits and differential gene expression in leaf, stem, and root tissue from hop (Humulus lupulus) cv. USDA Cascade in plants exposed to high temperature stress, low-water stress, and a compound treatment of both high temperature and low-water stress for six weeks. The stress conditions imposed in these experiments caused substantial changes to the transcriptome, with significant reductions in the expression of numerous genes involved in secondary metabolite biosynthesis. Of the genes involved in bitter acid production, the critical gene valerophenone synthase (VPS) experienced significant reductions in expression levels across stress treatments, suggesting stress-induced lability in this gene and/or its regulatory elements may be at least partially responsible for previously reported declines in bitter acid content. We also identified a number of transcripts with homology to genes shown to affect abiotic stress tolerance in other plants that may be useful as markers for breeding improved abiotic stress tolerance in hop. Lastly, we provide the first transcriptome from hop root tissue.


Author(s):  
B. P. Forster

SynopsisGenetic variation within a crop species is often limited and restricts improvement by conventional breeding methods. This is particularly true for environmental stresses, both biotic and abiotic. Wild relatives of crop plants, however, provide a rich source of novel variation which can be introduced into the crop. Many alien genes for biotic stress resistance have already been introduced into crops; in contrast, the genetic control of abiotic stress tolerance is poorly understood. Genetic engineering of abiotic stress tolerance in the Triticeae is the main subject discussed here with particular reference to salt tolerance in wheat and barley. Methods of alien gene transfer, including locating tolerance genes and restructuring chromosomes, are described. One of the major limitations in transferring genes for stress tolerance is the lack of good tests for resistance or tolerance which is largely due to the fact the physiological mechanisms involved are not fully understood. Genetic markers provide a new opportunity of detecting chromosome segments carrying desired genes easily and efficiently, and these will become increasingly important as the genetic maps of crop species are expanded. Although many stress genes have been located to specific chromosomes, and some have been mapped intra-chromosomally and their dominance relations determined, there is a great lack of knowledge of the control of these genes at the molecular level. Molecular studies of this type are difficult, but it is anticipated that the limitations will be overcome in the near future.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Parimalan Rangan ◽  
Rajkumar Subramani ◽  
Rajesh Kumar ◽  
Amit Kumar Singh ◽  
Rakesh Singh

Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shivani Nagar ◽  
V. P. Singh ◽  
Ajay Arora ◽  
Rajkumar Dhakar ◽  
Neera Singh ◽  
...  

Understanding the physiological mechanism of tolerance under stress conditions is an imperative aspect of the crop improvement programme. The role of plant hormones is well-established in abiotic stress tolerance. However, the information on the role of gibberellic acid (GA) in abiotic stress tolerance in late sown wheat is still not thoroughly explored. Thus, we aimed to investigate the role of endogenous GA3 level in stress tolerance in contrasting wheat cultivars, viz., temperature-tolerant (HD 2643 and DBW 14) and susceptible (HD 2189 and HD 2833) cultivars under timely and late sown conditions. We created the variation in endogenous GA3 level by exogenous spray of GA3 and its biosynthesis inhibitor paclobutrazol (PBZ). Tolerant genotypes had higher antioxidant enzyme activity, membrane stability, and photosynthesis rate, lower lipid peroxidase activity, and better growth and yield traits under late sown conditions attributed to H2O2 content. Application of PBZ escalated antioxidant enzymes activity and photosynthesis rate, and reduced the lipid peroxidation and ion leakage in stress, leading to improved thermotolerance. GA3 had a non-significant effect on antioxidant enzyme activity, lipid peroxidation, and membrane stability. However, GA3 application increased the test weight in HD 2643 and HD 2833 under timely and late sown conditions. GA3 upregulated GA biosynthesis and degradation pathway genes, and PBZ downregulated kaurene oxidase and GA2ox gene expression. GA3 also upregulated the expression of the cell expansins gene under both timely and late sown conditions. Exogenous GA3 did not increase thermotolerance but positively affected test weight and cell expansins gene expression. No direct relationship existed between endogenous GA3 content and stress tolerance traits, indicating that PBZ could have conferred thermotolerance through an alternative mechanism instead of inhibiting GA3biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document