scholarly journals Strength Investigation of an Upholstered Furniture Frame with Side Plates of PB, OSB and PLY by Finite Element Method

2020 ◽  
Vol 71 (3) ◽  
pp. 253-259
Author(s):  
Nelly Staneva ◽  
Yancho Genchev ◽  
Desislava Hristodorova

Comparative analysis of the strength characteristics of one-seat upholstered furniture frame with rails of Pinus Sylvestris L. and side plates of PB, OSB and PLY boards was carried out. 3D geometric model of the upholstered furniture frame was created by Autodesk Inventor Pro®. Linear static analyses were carried out by the method of finite elements (FEM) simulating light-service loading. The orthotropic material characteristics of the used materials were considered in the analyses. Two variants of corner joints in the frame (model A – staples and PVAc; model B - staples, PVAc and strengthening elements under the rail of the seat) were considered. The laboratory established coefficients of rotational stiffness of used staple corner joints in the skeleton were considered in finite element analysis (FEA). As result, the distribution of the maximum and minimum principal stresses in the 3D model of upholstered furniture frame side plates were derived and analysed. The worst failure indexes according to Tsai-Wu failure criteria were calculated at heavy-service load. The study provided database of strength values that can help in the engineering of upholstered furniture frames with side plates of PB, OSB and PLY.

2014 ◽  
Vol 644-650 ◽  
pp. 455-458
Author(s):  
Yao Ye ◽  
Yong Hai Wu

Frame has important effects on the performance of the whole of heavy semi-trailer. A heavy semi-trailer frame is analyzed and researched on in the finite-element way in this article. The frame of 3D geometric model is established by using Pro/E. And it was imported into the Hypermesh to establish frame finite element model. Frame are calculated by using ANSYS solver in bending condition, emergency braking conditions and rapid turn conditions of stress and deformation conditions. The computational tools and methods we used provide the new type of frame and development with a reference method to refer to in this paper.


2012 ◽  
Vol 251 ◽  
pp. 84-90
Author(s):  
Jiang Ping Wang ◽  
Ze Fu Bao

Oil-drilling derrick is the most important integrant of the equipments in oil industry and is also a giant load bearing structure. In this paper, the 3D geometric model of the derrick is created by commercial finite element analysis (FEA) software ANSYS, and the static stresses under several working conditions are analyzed. The displacement and stress distribution of the derrick acquired can lay the theoretical basis for the optimization design of structural and material choices of the derrick further.


2021 ◽  
Vol 49 ◽  
Author(s):  
A. A. Smirnov ◽  
A. L. Ovsepyan ◽  
P. A. Kvindt ◽  
F. N. Paleev ◽  
E. V. Borisova ◽  
...  

Rationale: 3D modeling of various anatomical structures has recently become a separate area of topographical, anatomical, and biomechanical studies. Current in vivo visualization methods and quantitative analysis in silico allow to perform the precise modeling of these processes aimed at investigation into the pathophysiology of cardiovascular disorders, risk prediction, planning of surgical interventions and virtual refinement of their separate stages.Aim: To develop tools for elaboration, analysis and validation of personalized models of various structures of the heart and aortal arch taking into account their morphological characteristics.Materials and methods: We used the results of 14 computed tomography studies from randomized patients without any disease or anomaly of the heart, aortic valve and aortal bulb. The analysis and subsequent transformation of the images were done with Vidar DICOM Viewer, SolidWorks 2016, VMTKLab software. For the FSI modeling of the aortic arch based on the results of functional multiaxial computed (MAC) coronarography (a female patient of 55 years) we developed a personalized model of the ascending aorta and aortic arch at the beginning of the systole. Using HyperMesh software (Altair Engineering Inc., USA) we have built a network of finite element of the luminal area, adventitia, and aortic media. To model mechanical properties of the aortic structures we used an anisotropic hyperelastic material model by Holzapfel – Gasser – Ogden. Material modeling, choice of the limiting antecedents, and analysis of fluid-structure interaction were performed with Abaqus CAE 6.14 software (Simulia, Johnston, USA). Adaptive image meshing by Young was used to elaborate the finite element template of the left ventricle. The algorithm was realized within the IDE PyCharm software media in Python 3.7. The algorithm was realized based on the open-source libraries OpenCV, NumPy, Matplotlib, and SciPy.Results: The first stage of the development of the aortic valve model included the design of its virtual 3D template. Thereafter, a cohesive geometric model was elaborated. Subsequent stage of the work included the transformation of the aortic valve geometric model into the parametric one. This was done through the use of the “Equations” tool within the SolidWorks. No problems with geometry of the model during its deformation were identified. Aortic segment modeling was based on the data obtained by functional MAC coronarography. Based on this and on Inobitec Dicom Viewer software, we generated a multiplane reconstruction of the zone of interest including anatomical structure of the heart and aortic valve. With the resulting set of contours, we created a 3D model, which then was converted into a polygonal stereolithographic model. We developed an algorithm for adaptive meshing to elaborate a polygonal template capable of deformation that can be used for registration both with the net methods (B-Spline) and based on the image characteristics (homologous pixels). Conclusion: The resulting parametric 3D model of the aortic valve anatomical structures is capable of adequate transformation of its geometry under external factors. It can be used in simulators of endovascular cardiosurgical procedures.


2013 ◽  
Vol 385-386 ◽  
pp. 1752-1755
Author(s):  
De Qiang Zhang ◽  
Xin Li

Complex geometric model can be reconstructed rapidly and accurately with reverse engineering technology which is an important engineering technology .This paper focuses on the CAD/CAE/CAM integrated technology of crown restorations based on RE technology .To construct satisfied 3D model , the digital model from RE technology is combined with and finite element analysis of CAE. Advanced manufacturing technology is used for manufacturing of resin materials crown. That is laser rapid manufactory technology.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


2011 ◽  
Author(s):  
David Fornaro

Finite Element Analysis (FEA) is mature technology that has been in use for several decades as a tool to optimize structures for a wide variety of applications. Its application to composite structures is not new, however the technology for modeling and analyzing the behavior of composite structures continues to evolve on several fronts. This paper provides a review of the current state-of-the-art with regard to composites FEA, with a particular emphasis on applications to yacht structures. Topics covered are divided into three categories: Pre-processing; Postprocessing; and Non-linear Solutions. Pre-processing topics include meshing, ply properties, laminate definitions, element orientations, global ply tracking and load case development. Post-processing topics include principal stresses, failure indices and strength ratios. Nonlinear solution topics include progressive ply failure. Examples are included to highlight the application of advanced finite element analysis methodologies to the optimization of composite yacht structures.


Author(s):  
R. Villavicencio ◽  
Bin Liu ◽  
Kun Liu

The paper summarises observations of the fracture response of small-scale double hull specimens subjected to quasi-static impact loads by means of simulations of the respective experiments. The collision scenarios are used to evaluate the discretisation of the finite element models, and the energy-responses given by various failure criteria commonly selected for collision assessments. Nine double hull specimens are considered in the analysis so that to discuss the advantages and disadvantages of the different failure criterion selected for the comparison. Since a large scatter is observed from the numerical results, a discussion on the reliability of finite element analysis is also provided based on the present study and other research works found in the literature.


Author(s):  
Hussein H. Ammar ◽  
Victor H. Mucino ◽  
Peter Ngan ◽  
Richard J. Crout ◽  
Osama M. Mukdadi

Miniscrew implants have seen increasing clinical use as orthodontic anchorage devices with demonstrated stability. The focus of this study is to develop and simulate operative factors, such as load magnitudes and anchor locations to achieve desired motions in a patient-specific 3D model undergoing orthodontic treatment with miniscrew implant anchorage. A CT scan of a patient skull was imported into Mimics software (Materialise, 12.1). Segmentation operations were performed on the images to isolate the mandible, filter out noise, then reconstruct a smooth 3D model. A model of the left canine was reconstructed with the PDL modeled as a thin solid layer. A miniscrew was modeled with dimensions based on a clinical implant (BMK OAS-T1207) then inserted into the posterior mandible. All components were volumetrically meshed and optimized in Mimics software. Elements comprising the mandible bone and teeth were assigned a material based on their gray value ranges in HU from the original scan, and meshes were exported into ANSYS software. All materials were defined as linear and isotropic. A nonlinear PDL was also defined for comparison. For transverse forces applied on the miniscrew, maximum stresses increased linearly with loading and appeared at the neck or first thread and in the cortical bone. A distal tipping force was applied on the canine, and maximum stresses appeared in the tooth at the crown and apex and in the bone at the compression surface. Under maximum loading, stresses in bone were sufficient for resorption. The nonlinear PDL exhibited lower stresses and deflections than the linear model due to increasing stiffness. Numerous stress concentrations were seen in all models. Results of this study demonstrate the potential of patient-specific 3D reconstruction from CT scans and finite-element simulation as a versatile and effective pre-operative planning tool for orthodontists.


Author(s):  
Valentin Mereuta

Abstract: In this work the 3D model of the camshaft was done using Autodesk Inventor version 2021 with the literature data and finite element analysis is performed by applying restrictions and loads conditions, first by the absence of the torque and then by applying the torque. Three materials were analyzed in both situations: Cast Iron, Stainless Steel AISI 202 and Steel Alloy. Following the comparative study for the three materials, it can be specified the importance of the material for the construction of the camshaft. Keywords: Camshaft, Static analysis, Autodesk Inventor


2020 ◽  
Vol 41 (1) ◽  
Author(s):  
Apai Benchaphong ◽  
Rattanasak Hongthong ◽  
Sutera Benchanukrom ◽  
Nirut Konkong

The purpose of this research was to study the behavior of cold-formed steel cantilever truss structures. A cantilever truss structure and bolt-moment connection were tested and verified by the 3D-finite element model. The verification results showed a good correlation between an experimental test and finite element analysis. An analytical method for elastic rotational stiffness of bolt-moment connection was proposed. The equation proposed in the analytical method was used to approximate the elastic rotational stiffness of the bolt group connection, and was also applied to the Richard-Abbott model for generating the nonlinear moment-rotation curve which modeled the semi-rigid connection stiffness. The 2D-finite element analysis was applied to study the behavior of the truss connection, caused by semi-rigid connection stiffness which caused a change of force to the truss elements. The results showed that the force in the structural members increased by between 13.62%-74.32% of the axial forces, and the bending moment decreased by between 33.05%-100%. These results strongly suggest that the semi-rigid connection between cold-formed steel cantilever truss structures should be considered in structural analysis to achieve optimum design, acknowledging this as the real behavior of the structure.


Sign in / Sign up

Export Citation Format

Share Document