scholarly journals Intrapopulation Diversity of Chlamydomonas reinhardtii Response to Copper Ions: Growth and Photosynthetic Performance Under Stress

2021 ◽  
Vol 90 ◽  
Author(s):  
Bartosz Pluciński ◽  
Andrzej Waloszek ◽  
Joanna Rutkowska ◽  
Kazimierz Strzałka

Abstract Despite being an essential micronutrient, copper is also a potentially toxic heavy metal. Using selection experiments, we produced Chlamydomonas reinhardtii populations with increased tolerance of copper ions and then derived pure cell lines from these populations. Strains derived from the same population (both adapted and nonadapted) significantly differed in terms of growth parameters. Cultivation of the strains in a range of copper ion concentrations revealed differences in growth and photosynthetic performance, which could be attributed to microevolutionary processes occurring with each cell division. Our results demonstrate the effects of environmental factors on rapidly multiplying microorganisms.

2018 ◽  
Vol 69 (11) ◽  
pp. 3010-3012
Author(s):  
Liliana Norocel ◽  
Gheorghe Gutt

The developed biosensor is based on the electrochemical signal of the complex formed between the ligand used (glycine) and copper(II) ions. The developed electrochemical method is quick, inexpensive, easy to apply, and has shown good selectivity for copper ions. In this research, a linear response for copper ions was obtained in the concentration range of 0.2 mg to 1 mg/L, which largely covers the area of copper ion concentrations in wine. The achieved sensitivity was 11.05E-05 and the limit of detection (LOD) was 0.041 ppm. The biosensor with screen printed electrodes has been successfully used to detect copper ions in wine. A comparative study between the developed portable biosensor and ICP-MS analysis results of the same samples showed similar results.


Phycologia ◽  
2021 ◽  
pp. 1-11
Author(s):  
Beatrycze Nowicka ◽  
Magdalena Zyzik ◽  
Maja Kapsiak ◽  
Wiktoria Ogrodzińska ◽  
Jerzy Kruk

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1099
Author(s):  
Sheng-Chun Hung ◽  
Chih-Cheng Lu ◽  
Yu-Ting Wu

The optical characteristics of copper ion detection, such as the photometric absorbance of specific wavelengths, exhibit significant intensity change upon incident light into the aqueous solutions with different concentrations of metal ions due to the electron transition in the orbit. In this study, we developed a low-cost, small-size and fast-response photoelectric sensing prototype as an optic sensor for copper (Cu) ions detection by utilizing the principle of optical absorption. We quantified the change of optical absorbance from infra-red (IR) light emitting diodes (LEDs) upon different concentrations of copper ions and the transmitted optical signals were transferred to the corresponding output voltage through a phototransistor and circuit integrated in the photoelectric sensing system. The optic sensor for copper (Cu) ions demonstrated not only excellent specificity with other metal ions such as cadmium (Cd), nickel (Ni), iron (Fe) and chloride (Cl) ions in the same aqueous solution but also satisfactory linearity and reproducibility. The sensitivity of the preliminary sensing system for copper ions was 29 mV/ppm from 0 to 1000 ppm. In addition, significant ion-selective characteristics and anti-interference capability were also observed in the experiments by the proposed approach.


2016 ◽  
Vol 45 (18) ◽  
pp. 7665-7671 ◽  
Author(s):  
Shanshan Guo ◽  
Shousi Lu ◽  
Pingxiang Xu ◽  
Yi Ma ◽  
Liang Zhao ◽  
...  

We report a biomimetic method to synthesize needle-like calcium phosphate (CaP) using carbon dots (CDs) and sodium carboxymethylcellulose as dual templates. The CaP/CDs were capable of cell labeling and selective detection of copper ions in drinking water.


2012 ◽  
Vol 24 (05) ◽  
pp. 453-459 ◽  
Author(s):  
Shenhsiung Lin ◽  
Chia-Chen Chang ◽  
Chii-Wann Lin

Heavy metals greatly influence animal physiology, even at small doses. Among these metals, the copper ion is of great concern due to its effects on humans and wide applications in industry. Compared to atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry, which destroy the samples that are analyzed, optical techniques do not decompose the analyte and have become a popular field of recent research. In this paper, we combined a novel optical detector that did not require sample-labeling, called surface plasmon resonance (SPR), with chitosan to detect copper ions by modifying the functional groups of chitosan through pH modification. Compared to other optical detectors, the SPR system was relatively fast and involved fewer experimental confounding factors. The three-dimensional structure of chitosan was used to obtain lower detection limits. Moreover, modification of the chitosan functional groups resulted in efficient regeneration by controlling the pH. A detection limit of 0.1 μM was obtained (linear range: 0.5–10 μM, R2 = 0.976), and the specificity was certified by comparing the copper ion with six other ions. Additionally, we successfully regenerated the SPR chips by modifying the functional groups. In conclusion, the chitosan–SPR system detected copper ions with improved detection limits using a quick and simple regeneration method.


2021 ◽  
Author(s):  
khaled Mostafa ◽  
H. Ameen ◽  
A. Ebessy ◽  
A. El-Sanabary

Abstract Our recently tailored and fully characterized poly (AN)-starch nanoparticle graft copolymer having 60.1 G.Y. % was used as a starting substrate for copper ions removal from waste water effluent after chemical modification with hydroxyl amine via oximation reaction. This was done to change the abundant nitrile groups in the above copolymer into amidoxime one and the resultant poly (amidoxime) resin was used as adsorbent for copper ions. The resin was characterized qualitatively via rapid vanadium ion test and instrumentally by FT-IR spectra and SEM morphological analysis to confirm the presence of amidoxime groups. The adsorption capacity of the resin was done using the batch technique, whereas the residual copper ions content in the filtrate before and after adsorption was measured using atomic adsorption spectrometry. It was found that the maximum adsorption capacity of poly (amidoxime) resin was 115.2 mg/g at pH 7, 400ppm copper ions concentration and 0.25 g adsorbent at room temperature. The adsorption, kinetics and isothermal study of the process is scrutinized using different variables, such as pH, contact time, copper ion concentration and adsorbent dosage. Different kinetics models comprising the pseudo-first-order and pseudo-second-order have been applied to the experimental data to envisage the adsorption kinetics. It was found from kinetic study that pseudo-second-order rate equation was better than pseudo-first-order supporting the formation of chemisorption process. While, in case of isothermal study, the examination of calculated correlation coefficient (R2) values showed that the Langmuir model provide the best fit to experimental data than Freundlich one.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012010
Author(s):  
B Haryanto ◽  
S E Saragih ◽  
R Tambun ◽  
H Harahap ◽  
K Manik ◽  
...  

Abstract Carbon charcoal was made from rambutan rods and used as an adsorbent. A gram 70/100 mesh size of adsorbent was then used to adsorb 100 ml of copper ion solution with a 70 ppm concentration. In this investigation, the batch procedure was used without shaking (naturally). The charcoal carbon rambutan ability to remove the copper ion was measured by AAS. The percentage result was 48,135% or about 33,694 ppm. SEM and EDX instrument analysis have applied to confirm the presence of copper ions on the adsorbent surface. The copper ion was found at a concentration of 0.09 percent of the total weight. The carbon charcoal adsorbent in rambutan rods has the ability to purify the water contaminated by metal ions.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Anika Küken ◽  
Frederik Sommer ◽  
Liliya Yaneva-Roder ◽  
Luke CM Mackinder ◽  
Melanie Höhne ◽  
...  

Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.


1978 ◽  
Vol 33 (10) ◽  
pp. 1165-1176 ◽  
Author(s):  
George Sosnovsky ◽  
Gary Karas

Abstract The reactions of dialkyl t-butylperoxy phosphates (1) and alkyl t-butylperoxy alkylphosphonates (2) with cyclohexene in the presence of a catalyticamount of copper (I) bromide at 80 °C in benzene afforded the corresponding phosphates (3) and phosphonates (4) in 50 to 70% yield. The analogous reaction of 1 (R = i-C3H7) with cycloheptene also gave the corresponding phosphate (8, n = 3)in 71% yield. However, phosphorylated cyclopentene (8, n = 1) and cyclooctene (8, n - 4) derivatives could not be isolated because of their thermal instability, and only the corresponding 1,3-cyclopentadiene and 1,3-cyclooctadiene were obtained in 92 and 38% yields, respectively. Thermal decomposition of 3 and 4 in the absence of a solvent at 110-115 °C gave 1,3-cyclohexadiene in 70 to 90% yield. For identification purposes, compounds 3 and 4 were prepared from the corresponding imidazole derivatives 5 and 6 and 2-cyelohexen- l-ol (7).A mechanism is proposed for the copper ion catalyzed reaction of 1 and 2 with cycloalkenes.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1864 ◽  
Author(s):  
Ziling Cao ◽  
Chen Zhang ◽  
Zhuoxin Yang ◽  
Qing Qin ◽  
Zhihua Zhang ◽  
...  

Carbon aerogel (CA) has a rich porous structure, in which micropores and mesopores provide a huge specific surface area to form electric double layers. This property can be applied to the application of capacitive deionization (CDI). The adsorption effect of CA electrode on Cu2+ in an aqueous solution was explored for solving heavy metal water pollution. The CAs were synthesized by a sol-gel process using an atmospheric drying method. The structure of CAs was characterized by scanning in an electron microscope (SEM) and nitrogen adsorption/desorption techniques. The adsorption system was built using Cu2+ solution as the simulation of heavy metal pollution solution. The control variate method was used to investigate the effect of the anion species in copper solution, the molar ratio of resorcinol to catalyst (R/C) of CA, and the applied voltage and concentration of copper ion on the adsorption results.


Sign in / Sign up

Export Citation Format

Share Document