scholarly journals Pseudomonas aeruginosa in Nepali hospitals: poor outcomes amid 10 years of increasing antimicrobial resistance

2021 ◽  
Vol 11 (1) ◽  
pp. 58-63
Author(s):  
M. Mahto ◽  
A. Shah ◽  
K. L. Show ◽  
F. L. Moses ◽  
A. G. Stewart

OBJECTIVE: To determine antimicrobial resistance patterns and prevalence of multi- (MDR, i.e., resistant to 3 classes of antimicrobial agents) and extensively (XDR, i.e., resistant to 3, susceptible to 2 groups of antibiotics) drug-resistant strains of Pseudomonas aeruginosa.METHODS: This was a cross-sectional study conducted in Nepal Mediciti Hospital, Lalitpur, Nepal, using standard microbiological methods with Kirby Bauer disc diffusion to identify antimicrobial susceptibility.RESULTS: P. aeruginosa (n = 447) were most frequently isolated in respiratory (n = 203, 45.4%) and urinary samples (n = 120, 26.8%). AWaRe Access antibiotics showed 25–30% resistance, Watch antibiotics 30–55%. Susceptibility to AWaRe Reserve antibiotics remains high; however, 32.8% were resistant to aztreonam. Overall, 190 (42.5%) were MDR and 99 (22.1%) XDR (first Nepali report) based on mainly non-respiratory samples. The majority of infected patients were >40 years (n = 229, 63.2%) or inpatients (n = 181, 50.0%); 36 (15.2%) had an unfavourable outcome, including death (n = 25, 10.5%). Our larger study showed a failure of improvement over eight previous studies covering 10 years.CONCLUSION: Antibiotic resistance in P. aeruginosa occurred to all 19 AWaRe group antibiotics tested. Vulnerable patients are at significant risk from such resistant strains, with a high death rate. Sustainable and acceptable antibiotic surveillance and control are urgently needed across Nepal, as antimicrobial resistance has deteriorated over the last decade.

2021 ◽  
Vol 6 (1) ◽  
pp. 1-8
Author(s):  
Kazmi A

Background: Nosocomial infections are great threat for hospitalized patients and Pseudomonas aeruginosa has emerged as one of the most potent nosocomial pathogens along with its diverse mechanisms to counter the various antimicrobial agents such as aminoglycosides, fluoroquinolones, monobactems, third generation cephalosporins, carbapenams and broad- spectrum penicillins. P. aeruginosa is one of the well-known pyogenic bacteria and is 3rd leading cause of pyogenic infections with the variable frequency depending on geographical region and clinical setting. P. aeruginosa is intimately associated with pyogenic nosocomial infections. Objectives: Since multidrug resistant strains of P. aeruginosa have posed serious threats and are frequently implicated in nosocomial infections. Methods: Pus swab were sampled under aseptic conditions and cultured on blood and Muller Hinton agar. Gram reaction, pigment production, Oxidase, indole reaction and citrate test were used to confirm isolate. Antibiotic susceptibility was performed b Kirby Bauer technique. Results compiled by us in this cross sectional study, showed 58 cases of P. aeruginosa out of 289 cases. This included 43% males and 57% females. Majority of the patients were of young age, with mean age 38 years. Antibiotic sensitivity revealed resistance to gentamicin was 50%, amikacin was 64%, ciprofloxacin and Aztronem 66%, Cefaparazone 69%, Tzaocin 71% and meropenem and sulzone was 79%. While Colistin and Ceftazidime were the most effective in 85% and 89% of cases respectively. The multidrug resistant strains of P. aeruginosa infections accounted for 32.76% of total P. aeruginosa infections. This study reveals high prevalence of multidrug resistant organisms at the set of our study. Based on this study, we suggest adopting the strategies to minimize the risk of nosocomial infections to slow down the rapidly growing multidrug resistance. These strategies may include, stricter antiseptic measures, fastening the recovery process and reducing the hospital stay and considering other alternates. Besides this, we would like to suggest the precise use of antibiotic susceptibility facility to reduce the nosocomial infection associated complications.


2020 ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
teke apalata

Abstract Background: Pseudomonas aeruginosa is a common pathogen causing healthcare-associated infections most especially in critically ill and immunocompromised patients. This pathogen poses a public health threat due to its innate resistance to many antimicrobial agents and its ability to acquire new resistance mechanisms under pressure. Infections with Extended spectrum β-lactamases (ESBL)‑producing isolates result into outbreaks that lead to serious antibiotic management concerns with higher mortality and morbidity and significant economic causatives. In this study, we evaluated the antimicrobial resistance patterns and characterized genetically the ESBLs and Metallo- β-lactamases (MBL) produced by this pathogen. Methods: Isolates of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; and their antibiotic resistance patterns were tested against amikacin, aztreonam, cefepime, ceftazidime, ciprofloxacin, doripenem, gentamicin, imipenem, levofloxacin, meropenem, piperacillin, piperacillin/tazobactam and tobramycin using the bioMérieux VITEK® 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Results: High antibiotic resistance in decreasing order was observed in piperacillin (64.2%), aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug resistant (MDR) isolates were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n=82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the isolates tested. Conclusions: The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant isolates carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257272
Author(s):  
Habtamu Mekonnen ◽  
Abdurahaman Seid ◽  
Genet Molla Fenta ◽  
Teklay Gebrecherkos

Introduction Hospital admitted patients are at increased risk of nosocomial infections (NIs) with multi-drug resistant (MDR) pathogens which are prevalent in the hospital environment. Pseudomonas aeruginosa (P. aeruginosa) and Acinetobacter baumannii (A. baumannii) are common causes of NIs worldwide. The objective of this study is to determine antimicrobial resistance profiles and associated factors of Acinetobacter spp and P. aeruginosa NIs among hospitalized patients. Methods A cross-sectional study was conducted at Dessie comprehensive specialized hospital, North-East Ethiopia, from February 1 to April 30, 2020. A total of 254 patients who were suspected of the bloodstream, urinary tract, or surgical site nosocomial infections were enrolled consecutively. Socio-demographic and other variables of interest were collected using a structured questionnaire. Specimens were collected and processed following standard microbiological procedures. Antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Data were analyzed with SPSS version 23 and p-value < 0.05 was considered statistically significant. Results Overall, 13% of patients had nosocomial Acinetobacter spp and/or P. aeruginosa infections. The culture positivity rate was 16(6.3%) for Acinetobacter spp and 18(7.1%) for P. aeruginosa. Patients admitted in the surgical ward (Adjusted odds ratio (AOR):10.66;95% confidence interval (CI):1.22–93.23), pediatric ward (AOR:14.37;95%CI:1.4–148.5), intensive care unit (AOR:41.93;95%CI:4.7–374.7) and orthopedics (AOR:52.21;95%CI:7.5–365) were significantly at risk to develop NIs compared to patients admitted in the medical ward. Patients who took more than two antimicrobial types at admission were 94% (AOR:0.06; 95% CI:0.004–0.84) times more protected from NIs compared to those who did not take any antimicrobial. About 81% of Acinetobacter spp and 83% of P. aeruginosa isolates were MDR. Amikacin and meropenem showed promising activity against Acinetobacter spp and P. aeruginosa isolates. Conclusion The high prevalence of MDR Acinetobacter spp and P. aeruginosa nosocomial isolates enforce treating of patients with NIs based on antimicrobial susceptibility testing results.


1983 ◽  
Vol 91 (3) ◽  
pp. 491-498 ◽  
Author(s):  
J. E. Degener ◽  
A. C. W. Smit ◽  
M. F. Michel ◽  
H. A. Valkenburg ◽  
L. Muller

SUMMARYResistance of faecalEscherichia colito ampicillin, tetracycline, sulphamethoxazole and gentamicin was studied in patients admitted to seven different departments in two hospitals. The resistance to ampicillin, tetracycline and sulphamethoxazole in the seven patient groups was 27–57%, 26–56% and 35–63%, respectively. Resistance to gentamicin was found in only one department. AnE. coliflora predominantly resistant to ampicillin, tetracycline or sulphamethoxazole (> 50% of theE. colistrains in a faecal sample resistant) was found in 10–38%, 4–30% and 21–35% of the samples. A cross-sectional study focusing on the influence of the use of antimicrobial agents on the occurrence of resistant strains revealed a positive correlation between the annual turnover of broad-spectrum penicillins in various departments and the occurrence of predominantly ampicillin-resistantE. colistrains in these departments.


2021 ◽  
Author(s):  
Wang Chun Kwok ◽  
James Chung-man Ho ◽  
Chi Chun Terence Tam ◽  
Sau Man Mary Ip ◽  
David Chi-Leung Lam

Abstract Background: Pseudomonas aeruginosa is one of the commonest bacteria colonizing the airway in patients with non-cystic fibrosis bronchiectasis. Pseudomonas aeruginosa colonization is associated with poor outcomes in patients with bronchiectasis, including rapid decline in lung function, exacerbation frequency and hospitalization.Methods: A cross-sectional study in Queen Mary Hospital, Hong Kong that included 350 Chinese patients with non-cystic fibrosis bronchiectasis to investigate the risk factors for Pseudomonas aeruginosa colonization and clinical implications on disease outcomes.Discussion: Pseudomonas aeruginosa colonization was more commonly found in patients with longer duration of bronchiectasis and those on proton pump inhibitors (PPIs) with adjusted ORs of 1.066 (95% CI = 1.036 – 1.096, p < 0.001) and 2.815 (95% CI = 1.307 – 6.064, p = 0.008) respectively. Patients with Pseudomonas aeruginosa colonization have more extensive lung involvement and higher risks of exacerbation requiring hospitalization with adjusted ORs of 2.445 (95% CI = 1.283 – 4.657, p = 0.007) and 2.745 (95% CI = 1.012 – 7.449, p = 0.047) respectively. Pseudomonas aeruginosa colonization is more common among patients with longer duration of bronchiectasis and those on PPI. Pseudomonas aeruginosa colonization is associated with more extensive lung involvement and higher risks of exacerbation requiring hospitalization.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wang Chun Kwok ◽  
James Chung Man Ho ◽  
Terence Chi Chun Tam ◽  
Mary Sau Man Ip ◽  
David Chi Leung Lam

Abstract Background Pseudomonas aeruginosa is one of the commonest bacteria colonizing the airway in patients with non-cystic fibrosis bronchiectasis. Pseudomonas aeruginosa colonization is associated with poor outcomes in patients with bronchiectasis, including rapid decline in lung function, exacerbation frequency and hospitalization. Methods A cross-sectional study in Queen Mary Hospital, Hong Kong that included 350 Chinese patients with non-cystic fibrosis bronchiectasis to investigate the risk factors for Pseudomonas aeruginosa colonization and clinical implications on disease outcomes. Discussions Pseudomonas aeruginosa colonization was more commonly found in patients with longer duration of bronchiectasis and those on proton pump inhibitors (PPIs) with adjusted ORs of 1.066 (95% CI = 1.036–1.096, p < 0.001) and 2.815 (95% CI = 1.307–6.064, p = 0.008) respectively. Patients with Pseudomonas aeruginosa colonization have more extensive lung involvement and higher risks of exacerbation requiring hospitalization with adjusted ORs of 2.445 (95% CI = 1.283–4.657, p = 0.007) and 2.745 (95% CI = 1.012–7.449, p = 0.047) respectively. Pseudomonas aeruginosa colonization is more common among patients with longer duration of bronchiectasis and those on PPI. Pseudomonas aeruginosa colonization is associated with more extensive lung involvement and higher risks of exacerbation requiring hospitalization.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S858-S858
Author(s):  
Monica Maria Rojas Rojas ◽  
Catalina López ◽  
Jaime Ruiz ◽  
Jacquleine Pavía ◽  
Jose Oñate ◽  
...  

Abstract Background The Study for Monitoring Antimicrobial Resistance Trends (SMART) is a worldwide initiative to monitor in vitro susceptibility of clinical Gram-negative isolates to several antimicrobial agents. Surveillance initiatives are essential to provide real-world evidence to support local guidelines development. Colombia has participated since 2012 with isolates from complicated intrabdominal infections (cIAI), complicated urinary tract infections (cUTI) and respiratory tract infections (RTI). This study describes resistant patterns of Escherichia coli (Eco), Klebsiella pneumoniae (Kpn) and Pseudomonas aeruginosa (Pae) clinical isolates collected in Colombian hospitals in a 2 years period (2017–2018). Methods Isolates from patients with cIAI, cUTI and RTI were collected. Identification confirmation was done in central laboratory. Minimum inhibitory concentrations (MIC) were performed by broth microdilution and interpreted according to 2018 CLSI guidelines, same criteria for Extended-spectrum β-lactamase (ESBL) classification. The antimicrobial activity was evaluated for aztreonam (ATM), ceftolozane/tazobactam (C/T), ceftazidime (CAZ), colistin (COL), ertapenem (ETP), cefepime (FEP), imipenem (IMP), meropenem (MEM) and piperacillin–tazobactam (TZP). Results During 2017–2018, 1492 isolates were collected. The main organism was Eco (51%) followed by Kpn (29%) and Pae (20%). In vitro susceptibility activity is presented in Table 1. COL, C/T, ETP, MEM and IPM exhibited over 95% susceptibility in Eco. ESBL prevalence was 18% for Eco (53/314) and 22% for Kpn (36/165). COL and C/T were the most active agents against Pae isolates. For Kpn, MIC50/90 values were: MEM (0.12 / 8), C/T (0.5 / 8) and for TZP (8 / > 64), meanwhile for Pae were MEM (0.5 / 32), C/T (0.5 / 32) and for TZP (8 / > 64). Conclusion Continued antimicrobial resistance surveillance initiatives are critical to guide the empiric treatments decision in a multidrug resistance era. This study shows that Ceftolozane/Tazobactam, MEM and COL have the best susceptibility profile against Eco, Kpn and Pae of cIAI, cUTI and RTI cases in Colombia. The C/T susceptibility rates and low MIC distribution provide evidence to support its use as a non-carbapenem therapeutic alternative for Gram-negative infections. Disclosures All authors: No reported disclosures.


2014 ◽  
Vol 13 (4) ◽  
pp. 438-442
Author(s):  
Salman Khan ◽  
Priti Singh ◽  
Ms. Rashmi ◽  
Ashish Asthana

Objective: Continuous emergence of resistance among Pseudomonas aeruginosa strains to common antimicrobial drugs have been documented world-wide. This study investigated the recent trend of antimicrobial resistance patterns of P. aeruginosa among the patients in mid & far western region of Nepal. Materials and Methods: The study was conducted on 917 patients with suspected P. aeruginosa infections, attending outpatient and inpatient departments of Nepalgunj Medical College and teaching Hospital, Banke, Nepal from September 2011 to January 2014. Specimens were collected from pus/wound, sputum, urine, tracheal aspirates, central venous catheter tip, broncho-alveolar lavage fluid, catheters and vaginal swabs and processed for isolation and identification of P. aeruginosa following the standard microbiological methods. The disc diffusion test was used to determined antimicrobial resistance patterns of the recovered isolates at the central Laboratory of Microbiology. Results: One hundred ninety four isolates were identified as P. aeruginosa. Resistance to Chloramphenicol (74.23%), Ceftriaxone (69.56%), Cefepime (57.22%), Cefoperazone-Salbactum (54.12%) and Co-trimoxazole (53.02%) was observed. All the isolates were susceptible to Imipenem. 48 (24.74%) of P. aeruginosa isolates were multi-drug resistant to >3 classes of antibiotics. Among 194 isolates, 88 (45.36%) were from the patients of 21-40 years age group, which was statistically significant (P<0.05) compared to the other age groups. Conclusions: The study revealed the presence of drug resistant strains of P. aeruginosa in Nepal. High levels of antibiotic resistance of many of the isolates might be due to antibiotic abuse. Therefore, we recommend judicious use of antibiotics by the physicians to curb the increasing multi-drug resistance of P. aeruginosa strains in Nepal. DOI: http://dx.doi.org/10.3329/bjms.v13i4.20591 Bangladesh Journal of Medical Science Vol.13(4) 2014 p.438-442


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 238
Author(s):  
Emmanuel Kabali ◽  
Girja Shanker Pandey ◽  
Musso Munyeme ◽  
Penjaninge Kapila ◽  
Andrew Nalishuwa Mukubesa ◽  
...  

A cross-sectional study was used to identify and assess prevalence and phenotypic antimicrobial resistance (AMR) profiles of Escherichia coli and other enterobacteria isolated from healthy wildlife and livestock cohabiting at a 10,000 acres game ranch near Lusaka, Zambia. Purposive sampling was used to select wildlife and livestock based on similarities in behavior, grazing habits and close interactions with humans. Isolates (n = 66) from fecal samples collected between April and August 2018 (n = 84) were examined following modified protocols for bacteria isolation, biochemical identification, molecular detection, phylogenetic analysis, and antimicrobial susceptibility testing by disc diffusion method. Data were analyzed using R software, Genetyx ver.12 and Mega 6. Using Applied Profile Index 20E kit for biochemical identification, polymerase chain reaction assay and sequencing, sixty-six isolates were identified to species level, of which Escherichia coli (72.7%, 48/66), E. fergusonii (1.5%, 1/66), Shigella sonnei (22.7%, 14/66), Sh. flexinerri (1.5%, 1/66) and Enterobacteriaceae bacterium (1.5%, 1/66), and their relationships were illustrated in a phylogenetic tree. Phenotypic antimicrobial resistance or intermediate sensitivity expression to at least one antimicrobial agent was detected in 89.6% of the E. coli, and 73.3% of the Shigella isolates. The E. coli isolates exhibited the highest resistance rates to ampicillin (27%), ceftazidime (14.3%), cefotaxime (9.5%), and kanamycin (9.5%). Multidrug resistance (MDR) was detected in 18.8% of E. coli isolates while only 13.3% Shigella isolates showed MDR. The MDR was detected among isolates from impala and ostrich (wild animals in which no antimicrobial treatment was used), and in isolates from cattle, pigs, and goats (domesticated animals). This study indicates the possible transmission of drug-resistant microorganisms between animals cohabiting at the wildlife–livestock interface. It emphasizes the need for further investigation of the role of wildlife in the development and transmission of AMR, which is an issue of global concern.


Sign in / Sign up

Export Citation Format

Share Document