scholarly journals CRISPR-Cas Systems in Prokaryotes

2015 ◽  
Vol 64 (3) ◽  
pp. 193-202 ◽  
Author(s):  
Michał Burmistrz ◽  
Krzysztof Pyrc

Prokaryotic organisms possess numerous strategies that enable survival in hostile conditions. Among others, these conditions include the invasion of foreign nucleic acids such as bacteriophages and plasmids. The clustered regularly interspaced palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) system provides the majority of bacteria and archaea with adaptive and hereditary immunity against this threat. This mechanism of immunity is based on short fragments of foreign DNA incorporated within the hosts genome. After transcription, these fragments guide protein complexes that target foreign nucleic acids and promote their degradation. The aim of this review is to summarize the current status of CRISPR-Cas research, including the mechanisms of action, the classification of different types and subtypes of these systems, and the development of new CRISPR-Cas-based molecular biology tools.

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Somayeh Jolany vangah ◽  
Camellia Katalani ◽  
Hannah A. Boone ◽  
Abbas Hajizade ◽  
Adna Sijercic ◽  
...  

Abstract Interest in CRISPR technology, an instrumental component of prokaryotic adaptive immunity which enables prokaryotes to detect any foreign DNA and then destroy it, has gained popularity among members of the scientific community. This is due to CRISPR’s remarkable gene editing and cleaving abilities. While the application of CRISPR in human genome editing and diagnosis needs to be researched more fully, and any potential side effects or ambiguities resolved, CRISPR has already shown its capacity in an astonishing variety of applications related to genome editing and genetic engineering. One of its most currently relevant applications is in diagnosis of infectious and non-infectious diseases. Since its initial discovery, 6 types and 22 subtypes of CRISPR systems have been discovered and explored. Diagnostic CRISPR systems are most often derived from types II, V, and VI. Different types of CRISPR-Cas systems which have been identified in different microorganisms can target DNA (e.g. Cas9 and Cas12 enzymes) or RNA (e.g. Cas13 enzyme). Viral, bacterial, and non-infectious diseases such as cancer can all be diagnosed using the cleavage activity of CRISPR enzymes from the aforementioned types. Diagnostic tests using Cas12 and Cas13 enzymes have already been developed for detection of the emerging SARS-CoV-2 virus. Additionally, CRISPR diagnostic tests can be performed using simple reagents and paper-based lateral flow assays, which can potentially reduce laboratory and patient costs significantly. In this review, the classification of CRISPR-Cas systems as well as the basis of the CRISPR/Cas mechanisms of action will be presented. The application of these systems in medical diagnostics with emphasis on the diagnosis of COVID-19 will be discussed.


2020 ◽  
Author(s):  
Viktor Kostyukov

The monograph is devoted to molecular mechanics simulations of biologically important polymers like proteins and nucleic acids. It is shown that the algorithms based on the classical laws of motion of Newton, with high-quality parameterization and sufficient computing resources is able to correctly reproduce and predict the structure and dynamics of macromolecules in aqueous solution. Summarized the development path of biopolymers molecular mechanics, its theoretical basis, current status and prospects for further progress. It may be useful to researchers specializing in molecular Biophysics and molecular biology, as well as students of senior courses of higher educational institutions, studying the biophysical and related areas of training.


Author(s):  
Jacob S. Hanker ◽  
Dale N. Holdren ◽  
Kenneth L. Cohen ◽  
Beverly L. Giammara

Keratitis and conjunctivitis (infections of the cornea or conjunctiva) are ocular infections caused by various bacteria, fungi, viruses or parasites; bacteria, however, are usually prominent. Systemic conditions such as alcoholism, diabetes, debilitating disease, AIDS and immunosuppressive therapy can lead to increased susceptibility but trauma and contact lens use are very important factors. Gram-negative bacteria are most frequently cultured in these situations and Pseudomonas aeruginosa is most usually isolated from culture-positive ulcers of patients using contact lenses. Smears for staining can be obtained with a special swab or spatula and Gram staining frequently guides choice of a therapeutic rinse prior to the report of the culture results upon which specific antibiotic therapy is based. In some cases staining of the direct smear may be diagnostic in situations where the culture will not grow. In these cases different types of stains occasionally assist in guiding therapy.


1982 ◽  
Vol 21 (03) ◽  
pp. 127-136 ◽  
Author(s):  
J. W. Wallis ◽  
E. H. Shortliffe

This paper reports on experiments designed to identify and implement mechanisms for enhancing the explanation capabilities of reasoning programs for medical consultation. The goals of an explanation system are discussed, as is the additional knowledge needed to meet these goals in a medical domain. We have focussed on the generation of explanations that are appropriate for different types of system users. This task requires a knowledge of what is complex and what is important; it is further strengthened by a classification of the associations or causal mechanisms inherent in the inference rules. A causal representation can also be used to aid in refining a comprehensive knowledge base so that the reasoning and explanations are more adequate. We describe a prototype system which reasons from causal inference rules and generates explanations that are appropriate for the user.


1990 ◽  
Author(s):  
Jesse Orlansky ◽  
Frances Grafton ◽  
Clessen J. Martin ◽  
William Alley ◽  
Bruce Bloxom

2020 ◽  
Vol 20 (6) ◽  
pp. 444-465 ◽  
Author(s):  
Jessica Ceramella ◽  
Domenico Iacopetta ◽  
Alexia Barbarossa ◽  
Anna Caruso ◽  
Fedora Grande ◽  
...  

Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.


2018 ◽  
Vol 18 (10) ◽  
pp. 957-966 ◽  
Author(s):  
Milene Aparecida Andrade ◽  
Mariana Aparecida Braga ◽  
Pedro Henrique Souza Cesar ◽  
Marcus Vinicius Cardoso Trento ◽  
Mariana Araújo Espósito ◽  
...  

Background: Essential oils are complex mixtures of low molecular weight compounds extracted from plants. Their main constituents are terpenes and phenylpropanoids, which are responsible for their biological and pharmaceutical properties, such as insecticidal, parasiticidal, antimicrobial, antioxidant, anti-inflammatory, analgesic, antinociceptive, anticarcinogenic, and antitumor properties. Cancer is a complex genetic disease considered as a serious public health problem worldwide, accounting for more than 8 million deaths annually. Objective: The activities of prevention and treatment of different types of cancer and the medicinal potential of essential oils are addressed in this review. Conclusion: Several studies have demonstrated anti-carcinogenic and antitumor activity for many essential oils obtained from various plant species. They may be used as a substitution to or in addition to conventional anti-cancer therapy. Although many studies report possible mechanisms of action for essential oils compounds, more studies are necessary in order to apply them safely and appropriately in cancer therapy.


2021 ◽  
pp. 1-16
Author(s):  
Anca Butiuc-Keul ◽  
Anca Farkas ◽  
Rahela Carpa ◽  
Dumitrana Iordache

Being frequently exposed to foreign nucleic acids, bacteria and archaea have developed an ingenious adaptive defense system, called CRISPR-Cas. The system is composed of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) array, together with CRISPR (<i>cas</i>)-associated genes. This system consists of a complex machinery that integrates fragments of foreign nucleic acids from viruses and mobile genetic elements (MGEs), into CRISPR arrays. The inserted segments (spacers) are transcribed and then used by cas proteins as guide RNAs for recognition and inactivation of the targets. Different types and families of CRISPR-Cas systems consist of distinct adaptation and effector modules with evolutionary trajectories, partially independent. The origin of the effector modules and the mechanism of spacer integration/deletion is far less clear. A review of the most recent data regarding the structure, ecology, and evolution of CRISPR-Cas systems and their role in the modulation of accessory genomes in prokaryotes is proposed in this article. The CRISPR-Cas system&apos;s impact on the physiology and ecology of prokaryotes, modulation of horizontal gene transfer events, is also discussed here. This system gained popularity after it was proposed as a tool for plant and animal embryo editing, in cancer therapy, as antimicrobial against pathogenic bacteria, and even for combating the novel coronavirus – SARS-CoV-2; thus, the newest and promising applications are reviewed as well.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 495
Author(s):  
Imayanmosha Wahlang ◽  
Arnab Kumar Maji ◽  
Goutam Saha ◽  
Prasun Chakrabarti ◽  
Michal Jasinski ◽  
...  

This article experiments with deep learning methodologies in echocardiogram (echo), a promising and vigorously researched technique in the preponderance field. This paper involves two different kinds of classification in the echo. Firstly, classification into normal (absence of abnormalities) or abnormal (presence of abnormalities) has been done, using 2D echo images, 3D Doppler images, and videographic images. Secondly, based on different types of regurgitation, namely, Mitral Regurgitation (MR), Aortic Regurgitation (AR), Tricuspid Regurgitation (TR), and a combination of the three types of regurgitation are classified using videographic echo images. Two deep-learning methodologies are used for these purposes, a Recurrent Neural Network (RNN) based methodology (Long Short Term Memory (LSTM)) and an Autoencoder based methodology (Variational AutoEncoder (VAE)). The use of videographic images distinguished this work from the existing work using SVM (Support Vector Machine) and also application of deep-learning methodologies is the first of many in this particular field. It was found that deep-learning methodologies perform better than SVM methodology in normal or abnormal classification. Overall, VAE performs better in 2D and 3D Doppler images (static images) while LSTM performs better in the case of videographic images.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhongwen Li ◽  
Jiewei Jiang ◽  
Kuan Chen ◽  
Qianqian Chen ◽  
Qinxiang Zheng ◽  
...  

AbstractKeratitis is the main cause of corneal blindness worldwide. Most vision loss caused by keratitis can be avoidable via early detection and treatment. The diagnosis of keratitis often requires skilled ophthalmologists. However, the world is short of ophthalmologists, especially in resource-limited settings, making the early diagnosis of keratitis challenging. Here, we develop a deep learning system for the automated classification of keratitis, other cornea abnormalities, and normal cornea based on 6,567 slit-lamp images. Our system exhibits remarkable performance in cornea images captured by the different types of digital slit lamp cameras and a smartphone with the super macro mode (all AUCs>0.96). The comparable sensitivity and specificity in keratitis detection are observed between the system and experienced cornea specialists. Our system has the potential to be applied to both digital slit lamp cameras and smartphones to promote the early diagnosis and treatment of keratitis, preventing the corneal blindness caused by keratitis.


Sign in / Sign up

Export Citation Format

Share Document