scholarly journals Effects of Abrasive Particle Type, Load and Sliding Distance on Micro-Abrasion Resistance of High Speed Steel Coated with AlCrN or AlTiN

2021 ◽  
Vol 27 (1) ◽  
pp. 50-56
Author(s):  
Vedat Veli ÇAY

High Speed Steel (HSS) specimen surfaces were coated with AlCrN and AlTiN via Physical Vapor Deposition (PVD) method. Then, the wear performances of the film coatings so produced were investigated by using different abrasive types with different particle sizes. During the micro-abrasion wear tests, 0.5, 1 and 1.5 N loads were applied for periods of 60 and 180 seconds. During the wear tests, wear loss increased with increasing SiC and Al2O3 abrasive particle size. Micro-grooving and micro-rolling wear were observed when F800 and F1200 abrasive slurry were used, respectively. It was determined that the volume losses formed by SiC abrasive particles on AlTiN and AlCrN coatings to be higher than Al2O3 abrasive particles. Volume losses increased with the increase in the applied load and the number of cycles. The AlCrN coatings exhibited better wear resistance than the AlTiN coatings. The applied test load had a significant effect on the wear mechanisms observed.

2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 464
Author(s):  
Alain Gil Del Val ◽  
Fernando Veiga ◽  
Octavio Pereira ◽  
Luis Norberto Lopez De Lacalle

Threading holes using tapping tools is a widely used machining operation in the industry. This manufacturing process involves a great tool immersion in the part, which involves both friction and cutting. This makes the use of coatings critical to improving tool life. Four coatings are used based on Physical vapor deposition (PVD) technology—TiN, TiCN, TiAlN and TiAlN+WC/C are compared to uncoated tool performance. The effect of various coatings on the life of M12 × 1.5 tapping tools during threading of through holes 20 mm deep, in GG25 casting plates, dry and applying cutting speed of 50 m/min. The end-of-life criterion has been established based on a cutting torque of 16 N-m. Taking the uncoated tap as a basis for comparison, it is observed that coatings based on PVD technologies increase tool life doubling in the most advantageous case with the TiAlN coating. PVD type coatings provide better protection to wear at cylindrical area of the tool, where the thread profile is finished, than uncoated taps. The teeth located in the cone-cylinder transition zone of the taps suffer the most wear regardless of the coating. However, taps coated with TiAlN+WC/C wear level values is lowest of all the coatings tested, which indicates a strong reinforcement in these teeth.


2009 ◽  
Vol 407-408 ◽  
pp. 569-572
Author(s):  
Shi Ming Ji ◽  
Ya Qi Shen ◽  
Li Zhang ◽  
Ming Sheng Jin ◽  
Yin Dong Zhang

In this paper, a critical study into the dynamic form of abrasive particles through polishing are made, which are under “inconsistent curvature contact” status. In this system, some abrasive particles are colored up and mixed with ordinary ones, by utilizing transparent working surface and stroboscopic light as well; motion state of abrasive particles can be photographed by high speed shot technology. This method can get serials of images while polishing. By using digital image processing technology, distribution of abrasive particle field can be obtained finally. In this paper, the abrasive particles field is researched to obtain the perfect abrasive particle field after purposefully control. Then the influence of the removed material caused by abrasive particles field can be improved, so it can provide strong theory foundation and practice guidance to surface polishing practice.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 332 ◽  
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

Thin hard coatings are widely known as key elements in many industrial fields, from equipment for metal machining to dental implants and orthopedic prosthesis. When it comes to machining and cutting tools, thin hard coatings are crucial for decreasing the coefficient of friction (COF) and for protecting tools against oxidation. The aim of this work was to evaluate the tribological performance of two commercially available thin hard coatings deposited by physical vapor deposition (PVD) on a high speed tool steel (S600) under extreme working conditions. For this purpose, pin-on-disc wear tests were carried out either at room temperature (293 K) or at high temperature (873 K) against alumina (Al2O3) balls. Two thin hard nitrogen-rich coatings were considered: a multilayer AlTiCrN and a superlattice (nanolayered) CrN/NbN. The surface and microstructure characterization were performed by optical profilometry, field-emission gun scanning electron microscopy (FEGSEM), and energy dispersive spectroscopy (EDS).


2015 ◽  
Vol 7 (8) ◽  
pp. 168781401559952 ◽  
Author(s):  
R Ravi Raja Malarvannan ◽  
TV Moorthy ◽  
S Sathish ◽  
P Hariharan

1963 ◽  
Vol 85 (4) ◽  
pp. 381-385 ◽  
Author(s):  
N. H. Cook ◽  
A. B. Lang

Tungsten carbide and high-speed-steel lathe tool wear tests, carried out by conventional means and by radioisotope techniques, are compared. When the irradiated tool is used to cut under only one set of conditions, good correlation is obtained between the two methods. When the irradiated tool is used under a variety of cutting conditions, correlation is poor. If a single tool is used under different cutting conditions, it is doubtful if differences of less than 2:1 are significant.


2014 ◽  
Vol 604 ◽  
pp. 67-70
Author(s):  
Leonid Kupchenko ◽  
Rauno Tali ◽  
Eron Adoberg ◽  
Valdek Mikli ◽  
Vitali Podgursky

TiN coatings with different thickness were prepared by arc ion plating (AIP) physical vapor deposition (PVD) on high speed steel (HSS) substrates. TiN coatings surface roughness was investigated by atomic force microscopy (AFM) and 3D optical profilometry and growth kinetics was described using scaling exponents β and α. The growth exponent β is 0.91-1.0 and the roughness exponent α is 0.77-0.81. Due to relatively high value of the exponent α, the surface diffusion is likely predominant smoothening mechanism of TiN growth.


2011 ◽  
Vol 50-51 ◽  
pp. 348-352
Author(s):  
Yong Hui Wei ◽  
Yong Zhen Zhang ◽  
Yue Chen

The influence of DC steady magnetic field on dry-sliding friction and wear characteristics of friction pair of high-speed steel (HSS) ring / Ti6Al4V pin is studied by use of improved MPV-1500 type under normal temperature. It is shown that the wear loss of ferromagnetic materials can be decreased by applying a steady magnetic field. Under the load of 250N and the friction velocity of 0.6m/s, the wear loss of the sample HSS ring keeps decreasing along with the enhancement of magnetic field intensity, and in the scope of 64mT-160mT, the average friction coefficient becomes smaller and smaller. Magnetic field can accelerate debris refinement. The wear mechanism covers oxidative wear and adhesive wear mainly.


2008 ◽  
Vol 15 (05) ◽  
pp. 653-659 ◽  
Author(s):  
MUBARAK ALI ◽  
ESAH HAMZAH ◽  
TAHIR ABBAS ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
ISHTIAQ A. QAZI

Cathodic arc physical vapor deposition (CAPVD) a technique used for the deposition of hard coatings for tooling applications has many advantages. The main drawback of this technique is the formation of macrodroplets (MDs) during deposition resulting in films with rougher morphology. The MDs contamination and growth mechanisms was investigated in TiN coatings over high-speed steel, as a function of metal ion etching, substrate bias, and nitrogen gas flow rate; it was observed that the latter is the most important factor in controlling the size and number of the macrodroplets.


Respuestas ◽  
2016 ◽  
Vol 21 (2) ◽  
pp. 103
Author(s):  
Jesús David Villarreal-López ◽  
William Arnulfo Aperador-Chaparro ◽  
Jairo Rafael Cortes-Lizarazo

Mediante la técnica de deposición física fase vapor (PVD) usando el método por magnetrón sputtering, se logró el recubrimiento en forma de monocapas de nitruro de vanadio sobre herramientas de acero rápido ASSAB 17® usados para el mecanizado por arranque de viruta en probetas de acero UNS G1020 para operaciones de cilindrado. Se realizaron cambios progresivos en los parámetros de corte tomando datos de temperatura sobre la herramienta, la probeta y el material removido para su posterior análisis y comparación con los datos obtenidos del mismo proceso realizado con herramientas sin ningún recubrimiento. Subsiguientemente se hizo la caracterización morfológica del recubrimiento mediante microscopio electrónico de barrido a las herramientas de corte. Se cuantificó la rugosidad de cada pobreta, característica fundamental para observar el aumento de la vida útil de la herramienta de corte y la reducción en los tiempos y costos de producción. Los resultados fueron contundentes, justificados en el incremento del desempeño en el arranque de material, mejor transferencia energética en el corte superior acabado superficial en las probetas.Palabras clave: Herramienta, mecanizado, vida útil.AbstractUsing the physical vapor deposition (PVD) technique with magnetron sputtering, we achieved monolayer-coating with vanadium nitride on ASSAB 17TM high speed steel tools used for machining UNS G1020 steal probes in turning operations by chip removal. We performed progressive changes in the cutting parameters, recording data related to temperature of the cutting tool, the graduated cylinder and the removed material for later analysis and comparison with similar data from the process performed with non-coated tools. Subsequently the morphologic characterization of the coating was carried out using scan electron microscope on the cutting tools. Graduate cylinder roughness was quantified to observe the lifetime extension and reduction of production cost reduction derived from the use of coated tools. The results were conclusive, justified in the increased performance in material removal, enhanced energetic transfer during cut and improved surface finished in the probes.Keywords: tool, machining; useful life.


Sign in / Sign up

Export Citation Format

Share Document