scholarly journals Microfungi, algae and cyanobacteria in soils polluted with fluorine (Kola Peninsula, Russia)

2020 ◽  
Vol 10 (1) ◽  
pp. 94-109
Author(s):  
Vera V. Redkina ◽  
Regina R. Shalygina ◽  
Mariya V. Korneykova

The analysis of algal-mycological complexes in Albic Podzolic soils affected by emissions of the Kandalaksha Aluminum Smelter (KAS) was carried out. The number and biomass of microscopic fungi in the maximum fluorine-polluted zone (fluorine-content >1000 mg/kg) more than 2 times lower than in distanced areas and amounted to 17.3 thousants colony-forming units/g and 1.33 mg/g respectively. Altogether, 31 species of soil fungi were isolated. The species Penicillium trzebinskii and P. miczynskii dominated the zone of maximum pollution. P. glabrum, P. spinulosum, and Memnoniella echinata prevailed in the zones of moderate pollution and background. The part of opportunistic fungi in contaminated soil increased in comparison with the background soil. The reduction of dark-colored fungi biomass in contaminated soil was noted. In total, 56 species of eukaryotic algae and 7 species of cyanobacteria were found. Among green algae, the species from families Chlorophyceae and Trebouxiophyceae dominated in all plots. In the zones of maximum and strong contamination, 53 algae species were found including xanthophytes, which were absent in unpolluted areas. The number of viable cells in the litter of the maximum contaminated soils varied from 100 thousand to 1.5 million in 1 g of absolutely dry soil. The species composition of algae and cyanobacteria in these soils showed the characteristic features of the Arctic biological soil crusts.

2020 ◽  
Vol 21 (1) ◽  
pp. 43-51
Author(s):  
A. V. Lednev ◽  
A. V. Lozhkin

The article presents the results of the influence of various aerating agents, carriers of new generation oil-oxidizing biological product on the agrophysical parameters of sod-podzolic soil highly contaminated with oil (up to 10%), and on the rate of oil decomposition in it. The studies were carried out in a microfield experiment in the conditions of the Udmurt Republic. It was established that during the growing season of 2019 all studied carriers of the biological product had positive effect on these indicators, however, the parameters of the changes were determined by their types. Thus, the application of sawdust, barley straw and flax shive into the soil provided an increase in the structural coefficient by 0.83-0.99 units or 35-43 %. All studied carriers of the biological product statistically significantly reduced the density of the contaminated soil, the greatest effect on this indicator was exerted by flax shive (by 0.42 g/cm3 or 32 %) and sawdust (by 0.34 g/cm3 or by 26 %). The application of vermiculite increased the productive moisture content in the contaminated soil most significantly - by 115 m3 /ha or by 50.7 %. The improvement of agrophysical properties of oil-contaminated soil by carriers of the biological product increased drastically the effectiveness of the preparation for oil decomposition. The greatest effect on this indicator (by 9.9-10.9 mg/kg or 40.2- 44.3 %) was exerted by the biological product in combination with flax shive, lignin and straw. The application of organomineral fertilizers into the contaminated soil also improved the agrophysical properties of oil-contaminated soils significantly and reduced the residual oil content in it by 13.0 mg/kg or 52.8 %.


2001 ◽  
Vol 43 (3) ◽  
pp. 291-298 ◽  
Author(s):  
C. F. Shen ◽  
J. A. Hawari ◽  
L. Paquet ◽  
G. Ampleman ◽  
S. Thiboutot ◽  
...  

The present study explores the feasibility of biotreatment of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-contaminated soils in slurry batch reactors. Radiorespirometric assays showed that anaerobic sludge was able to mineralize 59% RDX to CO2 although significant mineralization of TNT was not observed in all cases. TNT and RDX at concentrations higher than 50 and 100 mg/L respectively were inhibitory to methanogenesis (used as a bioindicator), however, methanogenesis recovered after TNT was transformed into less toxic triaminotoluene. Bioslurry batch reactors containing 40% of contaminated soil (2000 mg RDX and 1000 mg TNT/kg dry soil) were operated under various conditions. Both TNT and RDX were persistent to soil indigenous microbes. Degradation of both TNT and RDX was enhanced by the municipal sludge amendment, although degradation of RDX was only achieved under anaerobic conditions.


Polar Record ◽  
2001 ◽  
Vol 37 (202) ◽  
pp. 267-272 ◽  
Author(s):  
D.A. Soloway ◽  
M. Nahir ◽  
M.E. Billowits ◽  
L.G. Whyte

AbstractEffective remediation of petroleum-contaminated soils in the Arctic is becoming increasingly important as the magnitude of environmental risks becomes better defined. Unfortunately, some of the solutions implemented in southern Canada are too costly to use in the Arctic. However, effective remediation is still necessary. Consequently, traditional techniques are employed, such as excavation and landfarming, which are disruptive to the immediate soils, permafrost, and the surrounding habitat. These remedial methods, however, are becoming unacceptable to First Nations people in some Canadian Arctic communities. This paper describes preliminary results from an in-situ biodegradation study of petroleum-contaminated soils. This technique has the potential to provide an easily applied effective solution to the problem of devising a low cost and uncontroversial method of remediation. Based on bench-scale laboratory feasibility studies, it has been determined that the zone of contaminated soil at the Whitehorse Airport is suitable for in-situ bioremediation application.


2019 ◽  
Vol 95 (10) ◽  
pp. 923-929 ◽  
Author(s):  
Irina Yu. Kirtsideli ◽  
E. V. Abakumov ◽  
Sh. B. Teshebaev ◽  
M. S. Zelenskaya ◽  
D. Yu. Vlasov ◽  
...  

The composition and the structure of microbial communities in areas of Arctic settlements were studied. The main attention has been given to microscopic fungi. As result of observation of 5 Arctic regions 117 species of microscopic fungi are revealed in soils and anthropogenic substrates. The identification was carried out with the use ofmycological and molecular genetic methods. Most ofspecies belong to the Ascomycotina. Genus Penicillium is characterized by the most species diversity (24 species). Most offungi are destructors of various materials and potential human pathogens. Dominant species are revealed. The distribution of microorganisms in the living and working areas of polar stations, as well as the adjacent areas are described. Black-colored fungi adapted to unfavorable environment are often the dominated group of microorganisms on soils and anthropogenic substrates. The shaping of soil microbiota was shown to be related to the anthropogenic impact. Considerable similarity of microbial communities composition in the soil and man-made substrates is fixed. As result of mycological analysis of contaminated soils 76 species of microscopic fungi were observed, but 41 species of them (53.9%) were identified in the areas of Arctic polar stations on the man-made materials. These species include the representatives of the genera Alternaria, Aspergillus, Aureobasidium, Chaetomium, Cladosporium, Exophiala, Geomyces, Humicola, Penicillium, Mucor, Phoma, Rhodotorula, Trichoderma and Ulocladium. The obtained data show a significant similarity in species composition of contaminated soils and anthropogenic substrates. Human activity contributes to the distribution of cosmopolitan species, including opportunistic fungi, in the Arctic region. The high numbers of organotrophic bacteria were revealed in soil samples. Some species of microorganisms produce the organic acids in an external environment that promotes the erosion of materials.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 798
Author(s):  
Valentina Pidlisnyuk ◽  
Andriy Herts ◽  
Volodymyr Khomenchuk ◽  
Aigerim Mamirova ◽  
Oleksandr Kononchuk ◽  
...  

Miscanthus × giganteus (M. × giganteus) is a perspective plant produced on marginal and contaminated lands with biomass used for energy or bioproducts. In the current study, M. × giganteus development was tested in the diesel-contaminated soils (ranged from 250 mg kg−1 to 5000 mg kg−1) and the growth dynamic, leaves quantity, plants total area, number of harvested stems and leaves, SPAD and NPQt parameters were evaluated. Results showed a remarkable M. × giganteus growth in a selected interval of diesel-contaminated soil with sufficient harvested biomass. The amendment of soil by biochar 1 (produced from wastewater sludge) and biochar 2 (produced from a mixture of wood waste and biohumus) improved the crop’s morphological and physiological parameters. Biochar 1 stimulated the increase of the stems’ biomass, while biochar 2 increased the leaves biomass. The plants growing in the uncontaminated soil decreased the content of NO3, pH (KCl), P2O5 and increased the content of NH4. Photosynthesis parameters showed that incorporating biochar 1 and biochar 2 to the diesel-contaminated soil prolonged the plants’ vegetation, which was more potent for biochar 1. M. × giganteus utilization united with biochar amendment can be recommended to remediate diesel-contaminated land in concentration range 250–5000 mg kg−1.


2021 ◽  
Vol 8 (4) ◽  
pp. 986-999
Author(s):  
Ting Wu ◽  
Yangzhi Liu ◽  
Kun Yang ◽  
Lizhong Zhu ◽  
Jason C. White ◽  
...  

This work provides a new strategy using nanomaterial-facilitated phytoremediation to promote the restoration of POP-contaminated soils.


2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


2018 ◽  
Vol 777 ◽  
pp. 256-261 ◽  
Author(s):  
André Ribeiro ◽  
André Mota ◽  
Margarida Soares ◽  
Carlos Castro ◽  
Jorge Araújo ◽  
...  

Electrokinetic remediation deserves particular attention in soil treatment due to its peculiar advantages, including the capability of treating fine and low permeability materials, and achieving consolidation, dewatering and removal of salts and inorganic contaminants like heavy metals in a single stage. In this study, the remediation of artificially lead (II) contaminated soil by electrokinetic process, coupled with Eggshell Inorganic Fraction Powder (EGGIF) permeable reactive barrier (PRB), was investigated. An electric field of 2 V cm-1was applied and was used an EGGIF/soil ratio of 30 g kg-1 of contaminated soil for the preparation of the permeable reactive barrier (PRB) in each test. It was obtained high removal rates of lead in both experiments, especially near the cathode. In the normalized distance to cathode of 0.2 it was achieved a maximum removal rate of lead (II) of 68, 78 and 83% in initial lead (II) concentration of 500 mg-1, 200 mg-1 and 100 mg-1, respectively. EGGIF (Eggshell Inorganic Fraction) proved that can be used as permeable reactive barrier (PRB) since in all the performed tests were achieved adsorptions yields higher than 90%.


2015 ◽  
Vol 768 ◽  
pp. 150-154
Author(s):  
Yi Yun Liu ◽  
Shuang Cui ◽  
Qing Han ◽  
Qian Ru Zhang

Due to the influence of human, industrial and agricultural activity, a large amount of toxic and harmful heavy metal enter into the soil environment. Heavy metal can easily bio-accumulate through food chain, which cause serious damage to human health. Phytoremediation emerges as a new technology in exploration of effective methods for remediation and rebuild of heavy metal contaminated soils. Although phytoremediation shows great potential in remediation of heavy metal contaminated soil, there still exists many problems in practical application. This article analysis the problems existing in phytoremediation, summarizes the research progress of the technology in application from all the perspective of phytoremediation processes.


Sign in / Sign up

Export Citation Format

Share Document