scholarly journals USING OF ESTERS AS DISPERSION MEDIUM OF POLYUREA PLASTIC GREASES

Author(s):  
Boris P. Tonkonogov ◽  
Anastasiya Yu. Kilyakova ◽  
Sabina Z. Shumakaeva ◽  
Vladimir A. Vinokurov ◽  
Ravilya Z. Safieva ◽  
...  

This article presents first results of the investigated physico-chemical and operational parameters of composition greases obtained with the use of esters of different nature as a dispersion medium and the polyurea as a thickening agent, including the addition of nanocellulose. The choice of the ester base for the production of greases is possible due, on the one hand, to good combination of the physico-chemical properties (high viscosity index, low volatility, high flash and ignition temperature, low pour point, good anti-wear properties). On the other hand, in the production of greases with good ecological characteristics biodegradability of its components is of great importance, which in this case is provided by the use of esters as an oil base and an organic thickener, nanocellulose, as a component of the polyurea dispersed phase. It has been shown that from the dicarboxylic acid esters studied, the polyurea greases based on dioctyl adipate are superior to the dropping point and better colloidal stability as compared to dioctyl sebacate and dibutyl sebacate. The smaller size of the ether molecule provides the stronger structure of the polyurea grease. Similarly, for branched ethers, the grease based on tri-basic alcohols is more effective than the four-basic alcohols. The possibility of using nanocellulose as a thickener component was demonstrated. An increase in the content of nanocellulose to 3.5% increases the colloidal stability and the dropping temperature of the synthesized greases. The obtained samples have a wider range of operating temperatures, better rheological indicators than imported and domestic analogues.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
E Mestres ◽  
Q Matia-Algué ◽  
A Villamar ◽  
M García-Jiménez ◽  
A Casals ◽  
...  

Abstract Study question Do commercial mineral oil brands differ in their capacity to stabilize the human embryo culture system, and is this related to the oil’s viscosity? Summary answer While the oils’ viscosity only had minor effects on temperature maintenance, it showed a direct correlation with the stability of pH and osmolality during culture. What is known already Mineral oil is a key component of the in vitro embryo culture system, which stabilizes temperature, pH and osmolality of the media during culture. Its use has been implemented worldwide for several decades and many manufacturers currently produce and commercialize oil intended for human embryo culture. Unfortunately, oil remains as one of the less characterized products in the IVF laboratory due to a lack of standardized nomenclature, production and testing. With differing physico-chemical properties, such as viscosity, oils produced by various manufacturers could behave differently to the same culture conditions and, thus, its use may need to be adjusted accordingly. Study design, size, duration Viscosity was quantified in three high-viscosity (H-V) and three low-viscosity (L-V) oils with a viscosity-meter. The required time for media’s pH to equilibrate using each oil was studied, as well as its subsequent stability outside the incubator for 30min. In-drop temperature was assessed during 15min when taking a dish outside the incubator, and again when putting it back. Additionally, each oil’s capacity to avoid media evaporation was studied with daily osmolality measurements during 7 days. Participants/materials, setting, methods pH equilibration was measured with a continuous pHmeter (Log&Guard, Vitrolife) in 4-well dishes prepared with 600µl of medium and 500µl of oil. For the other experiments, 35mm dishes with 4ml of oil and 20µl media droplets were used. pH stability was assessed after 0, 15 and 30min outside the incubator with a blood-gas-analyzer (epoc,SiemensHelthineers). A fine-gauge thermocouple was used to measure in-drop temperature loss/recovery. Daily osmolality readings were taken with a vapor pressure osmometer (Vapro5600,Wescor). Main results and the role of chance The selected oil samples had a viscosity of 115, 111, 52, 22, 18, and 12cP. The medium’s pH took approximately 12h to completely equilibrate under H-V oils, while it took less than 4h in L-V. Similarly, the rise in pH after 30min on a heated stage outside of the incubator with room atmosphere was 0.03, 0.04, 0.06, 0.13, 0.17, and 0.26, respectively. Dishes were taken out of the incubator and placed on a heated surface. In the first five minutes, the in-drop temperature loss ranged between –0.22 and –0.13oC/min, with no significant differences observed between oil types. However, temperature plateaued at a significantly higher value in L-V oils (36.5oC), compared to H-V brands (36.25–36.1oC; p = 0.0005). By contrast, all samples followed a similar pattern when the dishes were returned to the benchtop incubator, with temperature taking around 7 minutes to completely recover. Some media evaporated in all oil groups during the 7-day culture in a dry benchtop incubator. The linear regression performed to compare the evaporation rate between groups showed a statistically significant correlation between oil viscosity and the rate of evaporation (p < 0.0001), with an osmolality rise ranging between +2.55mmol/kg/day in the most viscous oil and +6.29mmol/kg/day in the least viscous. Limitations, reasons for caution While the selected oils for this study represent a wide range of options in the market, future projects could widen this selection and include additional tests, such as optimized bioassays. Results may vary between centers, and thus each laboratory should test and optimize their culture system with their own settings. Wider implications of the findings: Different oil brands have shown differing physico-chemical properties that have a direct effect on the culture system and the stability of several culture conditions. These results may be of major importance to adapt the settings and methodologies followed in each IVF laboratory according to the type of oil being used. Trial registration number Not applicable


2018 ◽  
Vol 25 (35) ◽  
pp. 4553-4586 ◽  
Author(s):  
Jonas Schubert ◽  
Munish Chanana

Within the last two decades, the field of nanomedicine has not developed as successfully as has widely been hoped for. The main reason for this is the immense complexity of the biological systems, including the physico-chemical properties of the biological fluids as well as the biochemistry and the physiology of living systems. The nanoparticles’ physicochemical properties are also highly important. These differ profoundly from those of freshly synthesized particles when applied in biological/living systems as recent research in this field reveals. The physico-chemical properties of nanoparticles are predefined by their structural and functional design (core and coating material) and are highly affected by their interaction with the environment (temperature, pH, salt, proteins, cells). Since the coating material is the first part of the particle to come in contact with the environment, it does not only provide biocompatibility, but also defines the behavior (e.g. colloidal stability) and the fate (degradation, excretion, accumulation) of nanoparticles in the living systems. Hence, the coating matters, particularly for a nanoparticle system for biomedical applications, which has to fulfill its task in the complex environment of biological fluids, cells and organisms. In this review, we evaluate the performance of different coating materials for nanoparticles concerning their ability to provide colloidal stability in biological media and living systems.


2015 ◽  
Vol 44 (17) ◽  
pp. 6287-6305 ◽  
Author(s):  
Thomas L. Moore ◽  
Laura Rodriguez-Lorenzo ◽  
Vera Hirsch ◽  
Sandor Balog ◽  
Dominic Urban ◽  
...  

This review discusses nanoparticle colloidal stability in biological media in an attempt to shed light on the difficulty correlating nanoparticle physico-chemical properties and biological fate.


2014 ◽  
Vol 11 (96) ◽  
pp. 20130931 ◽  
Author(s):  
Christian Pfeiffer ◽  
Christoph Rehbock ◽  
Dominik Hühn ◽  
Carolina Carrillo-Carrion ◽  
Dorleta Jimenez de Aberasturi ◽  
...  

The physico-chemical properties of colloidal nanoparticles (NPs) are influenced by their local environment, as, in turn, the local environment influences the physico-chemical properties of the NPs. In other words, the local environment around NPs has a profound impact on the NPs, and it is different from bulk due to interaction with the NP surface. So far, this important effect has not been addressed in a comprehensive way in the literature. The vicinity of NPs can be sensitively influenced by local ions and ligands, with effects already occurring at extremely low concentrations. NPs in the Hückel regime are more sensitive to fluctuations in the ionic environment, because of a larger Debye length. The local ion concentration hereby affects the colloidal stability of the NPs, as it is different from bulk owing to Debye Hückel screening caused by the charge of the NPs. This can have subtle effects, now caused by the environment to the performance of the NP, such as for example a buffering effect caused by surface reaction on ultrapure ligand-free nanogold, a size quenching effect in the presence of specific ions and a significant impact on fluorophore-labelled NPs acting as ion sensors. Thus, the aim of this review is to clarify and give an unifying view of the complex interplay between the NP's surface with their nanoenvironment.


2017 ◽  
Vol 71 (3) ◽  
pp. 259-269 ◽  
Author(s):  
Marija Vasic ◽  
Marjan Randjelovic ◽  
Jelena Mitrovic ◽  
Nikola Stojkovic ◽  
Branko Matovic ◽  
...  

Titania based catalyst and TiO2 doped with zirconia were prepared by modified sol?gel method. The synthesized catalysts samples were characterized by BET, XRD, SEM and FTIR techniques. Photocatalytic activity was tested in the reaction of crystal violet (CV) dye decolorization/decomposition under UV light irradiation. The effect of several operational parameters, such as catalyst dosage, initial dye concentrations, duration of UV irradiation treatment and number of reaction cycles were also considered. The obtained results indicated faster dye decolorization with the increase of the catalyst amount and a decrease of initial CV concentrations. An influence of doping with zirconia on the physico-chemical properties of bare titania was studied. The doping procedure had affected photocatalytic properties of the final catalytic material, and had improved photocatalytic performances of doped catalyst on crystal violet decolorization/degradation in comparison to bare titania.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 21
Author(s):  
Raj Shah ◽  
Mathias Woydt ◽  
Stanley Zhang

Many industrial processes are dependent on the proper application of modern tribological knowledge for the purposes of maintaining equipment integrity and minimizing total energy losses. Consequently, the development of modern lubricants is vital for satisfying growing performance standards and increasingly stringent environmental regulations. Industrial lubricants are regulated based on demanding technical requirements and characteristics, such as high viscosity index, hydraulic stability, corrosion prevention, thermal stability, wide operating temperature ranges, demulsibility, and oxidative stability. Escalating environmental and sustainability concerns have shifted significance towards non-technical criteria for the evaluation of lubricants. Biodegradability and renewability are two influential factors in the discussion regarding the long-term sustainability of future tribological applications. Emphasis is placed on the development of environmentally friendly, non-toxic, and biodegradable lubricants that would minimize industrial pollution associated with oil-related spills and leakages. Bio-based lubricants, manufactured from renewable, organic resources, present themselves as viable alternatives to traditional petroleum-based lubricants. A major section of this review paper will provide a comparative analysis of renewable resource-based lubricants and mineral oil-based lubricants in terms of their chemical properties and respective advantages. Further discussion concerning biolubricants and use of non-edible plant feedstocks will highlight the clear economic and environmental incentives of implementing modern tribological knowledge. This review paper will conclude with the examination of the obstacles that modern day biolubricants must overcome and the future expectations of green tribology.


Author(s):  
Prithviraj Bhandare ◽  
G.R. Naik

Biodiesel is becoming prominent among the alternatives to conventional petro-diesel due to economic, environmental and social factors. The quality of biodiesel is influenced by the nature of feedstock and the production processes employed. High amounts of free fatty acids (FFA) in the feedstock are known to be detrimental to the quality of biodiesel. In addition, oils with compounds containing hydroxyl groups possess high viscosity due to hydrogen bonding. American Standards and Testing Materials, (ASTM D 6751) recommends FFA content of not more than 0.5% in biodiesel and a viscosity of less than 6 mm2/s. In this experiment the seed oils of 30 Neem (Azadirachta indica. A. juss) biotypes were screened and evaluated for their physico-chemical parameters for their potential in biodiesel. The properties of Neem biodiesel were compared with Bureau of Indian Standards (BIS) and the fuel properties of diesel. Results showed that high amounts of FFA in oils produced low quality biodiesel while neutralized oils with low amounts of FFA produced high quality biodiesel. The quality of biodiesel from jatropha and castor oils was improved greatly by neutralising the crude oils.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6060
Author(s):  
Andrzej Chmielowiec ◽  
Weronika Woś ◽  
Justyna Gumieniak

The viscosity of a fluid is one of its basic physico-chemical properties. The modelling of this property as a function of temperature has been the subject of intensive studies. The knowledge of how viscosity and temperature variation are related is particularly important for applications that use the intrinsic friction of fluids to dissipate energy, for example viscous torsional vibration dampers using high viscosity poly(dimethylsiloxane) as a damping factor. This article presents a new method for approximating the dynamic viscosity of poly(dimethylsiloxane). It is based on the three-parameter Weibull function that far better reflects the relationship between viscosity and temperature compared with the models used so far. Accurate mapping of dynamic viscosity is vitally important from the point of view of the construction of viscous dampers, as it allows for accurate estimation of their efficiency in the energy dissipation process.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jun Kameda

AbstractDestructive landslides were triggered by the 6.7 Mw Eastern Iburi earthquake that struck southern Hokkaido, Japan, on 6 September 2018. Heavy rainfall on 4 September in addition to intermittent rainfall around the Iburi Tobu area saturated and weakened the slope-forming materials (mostly altered volcanoclastic soils), making them susceptible to failure because of the earthquake’s strong ground motion. Most of the shallow landslides exhibited long runouts along gentle hill slopes, with characteristic halloysite-bearing slip surface at the base of the volcanic soils. This study investigated the mineralogical and physico-chemical properties of the slip surface material with the aim of understanding weakening and post-failure behaviors during the landslides. Halloysite in the slip surface had irregular-to-hollow-spherical morphology with higher mesopore volumes than tubular halloysite, which is related to a high capacity for water retention after rainfall. To reproduce possible chemical changes in the slip surface during rainfall, the sample was immersed in varying amounts of rainwater; solution pH increased and ionic strength decreased with increasing water content. These findings, alongside electrophoretic analysis, suggest that rainwater infiltration could have increased the absolute zeta potential value of the slip surface material. It is suggested that rainfall before the earthquake enhanced the colloidal stability of halloysite particles within the slip surface, owing to an increase in electrostatic repulsion. This decreased the material’s cohesive strength, which might have led to destabilization of the slope during ground shaking generated by the earthquake, and subsequent high-mobility flow after failure.


2021 ◽  
Vol 13 (4) ◽  
pp. 1749
Author(s):  
Laura Aguado-Deblas ◽  
Jesús Hidalgo-Carrillo ◽  
Felipa M. Bautista ◽  
Carlos Luna ◽  
Juan Calero ◽  
...  

Dimethyl carbonate (DMC) is an interesting blending component for diesel fuel (D) owing to the high oxygen content (53 wt.%) and the absence of C–C bonds in its structure. Moreover, DMC can be produced from CO2 and methanol, which provides a renewable way to reduce anthropogenic CO2. This research has been addressed to assess the use of DMC as a solvent of sunflower oil (SO) and castor oil (CO), with the purpose of obtaining biofuels that can replace fossil diesel as much as possible. The blending of DMC with straight vegetable oils (SVOs) reduces their high viscosity, allowing their usage as drop-in biofuels without chemical treatments. Based on viscosity requirements of European Standard EN 590, the optimal DMC/SVO double blends have been tested as direct biofuels by themselves or mixed with fossil diesel in D/DMC/SVO triple blends. Relevant physico-chemical properties of fuels have been analyzed. Engine parameters such as power output, brake-specific fuel consumption (BSFC) and soot emissions have been studied to determine the effect of new biofuels on efficiency of a diesel engine. An outstanding engine efficiency is shown by the studied D/DMC/SVO triple blends, either with SO or CO as an SVO. The low calorific value of DMC is the main reason for reduction in power and BSFC, as the amount of diesel in the triple blends is reduced. Experimental results demonstrate that the use of these biofuels allows the replacement of up to 40% of fossil diesel, without compromising the power and BSFC of the engine, and accomplishing optimal cold flow properties and a marked drop in exhaust emissions.


Sign in / Sign up

Export Citation Format

Share Document