scholarly journals Shank3 modulates sleep and expression of circadian transcription factors

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ashley M Ingiosi ◽  
Hannah Schoch ◽  
Taylor Wintler ◽  
Kristan G Singletary ◽  
Dario Righelli ◽  
...  

Autism Spectrum Disorder (ASD) is the most prevalent neurodevelopmental disorder in the United States and often co-presents with sleep problems. Sleep problems in ASD predict the severity of ASD core diagnostic symptoms and have a considerable impact on the quality of life of caregivers. Little is known, however, about the underlying molecular mechanisms of sleep problems in ASD. We investigated the role of Shank3, a high confidence ASD gene candidate, in sleep architecture and regulation. We show that mice lacking exon 21 of Shank3 have problems falling asleep even when sleepy. Using RNA-seq we show that sleep deprivation increases the differences in prefrontal cortex gene expression between mutants and wild types, downregulating circadian transcription factors Per3, Bhlhe41, Hlf, Tef, and Nr1d1. Shank3 mutants also have trouble regulating wheel-running activity in constant darkness. Overall, our study shows that Shank3 is an important modulator of sleep and clock gene expression.

2018 ◽  
Author(s):  
Ashley M. Ingiosi ◽  
Taylor Wintler ◽  
Hannah Schoch ◽  
Kristan G. Singletary ◽  
Dario Righelli ◽  
...  

AbstractAutism Spectrum Disorder (ASD) is the most prevalent neurodevelopmental disorder in the United States and often co-presents with sleep problems. Sleep problems in ASD predict the severity of ASD core diagnostic symptoms and have a considerable impact on the quality of life of caregivers. Little is known, however, about the underlying molecular mechanisms. We investigated the role of Shank3, a high confidence ASD gene candidate, in sleep architecture and regulation. We show that mice lacking exon 21 of Shank3 have problems falling asleep even when sleepy. Using RNA-seq we show that sleep deprivation increases the differences in gene expression between mutants and wild types, downregulating circadian transcription factors Per3, Dec2, Hlf, Tef, and Reverbα. Shank3 mutants also have trouble regulating wheel-running activity in constant darkness. Overall our study shows that Shank3 is an important modulator of sleep and clock gene expression.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuen Gao ◽  
Natalia Duque-Wilckens ◽  
Mohammad B. Aljazi ◽  
Yan Wu ◽  
Adam J. Moeser ◽  
...  

AbstractAutism spectrum disorder (ASD) is a neurodevelopmental disease associated with various gene mutations. Recent genetic and clinical studies report that mutations of the epigenetic gene ASH1L are highly associated with human ASD and intellectual disability (ID). However, the causality and underlying molecular mechanisms linking ASH1L mutations to genesis of ASD/ID remain undetermined. Here we show loss of ASH1L in the developing mouse brain is sufficient to cause multiple developmental defects, core autistic-like behaviors, and impaired cognitive memory. Gene expression analyses uncover critical roles of ASH1L in regulating gene expression during neural cell development. Thus, our study establishes an ASD/ID mouse model revealing the critical function of an epigenetic factor ASH1L in normal brain development, a causality between Ash1L mutations and ASD/ID-like behaviors in mice, and potential molecular mechanisms linking Ash1L mutations to brain functional abnormalities.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Saivageethi Nuthikattu ◽  
Dragan Milenkovic ◽  
John Rutledge ◽  
Amparo Villablanca

AbstractHyperlipidemia is a risk factor for dementia, and chronic consumption of a Western Diet (WD) is associated with cognitive impairment. However, the molecular mechanisms underlying the development of microvascular disease in the memory centers of the brain are poorly understood. This pilot study investigated the nutrigenomic pathways by which the WD regulates gene expression in hippocampal brain microvessels of female mice. Five-week-old female low-density lipoprotein receptor deficient (LDL-R−/−) and C57BL/6J wild type (WT) mice were fed a chow or WD for 8 weeks. Metabolics for lipids, glucose and insulin were determined. Differential gene expression, gene networks and pathways, transcription factors, and non-protein coding RNAs were evaluated by genome-wide microarray and bioinformatics analysis of laser captured hippocampal microvessels. The WD resulted in differential expression of 2,412 genes. The majority of differential gene expression was attributable to differential regulation of cell signaling proteins and their transcription factors, approximately 7% was attributable to differential expression of miRNAs, and a lesser proportion was due to other non-protein coding RNAs, primarily long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs) not previously described to be modified by the WD in females. Our findings revealed that chronic consumption of the WD resulted in integrated multilevel molecular regulation of the hippocampal microvasculature of female mice and may provide one of the mechanisms underlying vascular dementia.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S872-S872
Author(s):  
Ted G Graber ◽  
Rosario Marota ◽  
Jill Thompson ◽  
Steve Widen ◽  
Blake Rasmussen

Abstract One inevitable consequence of the effect of age on our bodies is the graduated deterioration of physical function and exercise capacity, driven, in part by the adverse effect of age on muscle tissue. Our primary purpose was to determine the relationship between patterns of gene expression in skeletal muscle and loss of physical function. We hypothesized that some genes that change expression with age would correlate with functional decline, or conversely with preservation of function. Male C57Bl/6 mice [adults (6-7 months old, n=9), older (24-25 months old, n=9), and elderly (28+ months of age, n=9) were tested for physical ability using a comprehensive functional assessment battery [CFAB, a composite scoring system: comprised of the rotarod (overall motor function), grip strength (fore-limb strength), inverted cling (4-limb strength/endurance), voluntary wheel running (activity rate/volitional exercise), and treadmill tests (endurance)]. We extracted RNA from the tibialis anterior muscles, ran RNAseq to examine the transcriptome using an Illumina NextSeq 550, comparing adults (n=7) to older (n=7) and elderly mice (n=9). Age resulted in gene expression differences of 1.5 log2 fold change or greater (p<0.01) in 46 genes in the older mice and in 252 genes in the elderly (both compared to adults). Current ongoing work is examining the physiological relevance of these genes to age-related loss of physical function. We are in the process of using linear regression to determine which of the genes with age-related changes in expression are associated (R>0.5 and p<0.05) with functional status as measured by CFAB.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Yao Zhang ◽  
Qiao-Lu Zang ◽  
Li-Wang Qi ◽  
Su-Ying Han ◽  
Wan-Feng Li

Grafting, cutting, and pruning are important horticultural techniques widely used in the establishment of clonal forestry. After the application of these techniques, some properties of the plants change, however, the underlying molecular mechanisms are still unclear. In our previous study, 27 age-related transcripts were found to be expressed differentially between the juvenile vegetative (1- and 2-year-old) and adult reproductive (25- and 50-year-old) phases of Larix kaempferi. Here, we re-analyzed the 27 age-related transcripts, cloned their full-length cDNA sequences, and measured their responses to grafting, cutting, and pruning. After sequence analysis and cloning, 20 transcription factors were obtained and annotated, most of which were associated with reproductive development, and six (LaAGL2-1, LaAGL2-2, LaAGL2-3, LaSOC1-1, LaAGL11, and LaAP2-2) showed regular expression patterns with L. kaempferi aging. Based on the expression patterns of these transcription factors in L. kaempferi trees subjected to grafting, cutting, and pruning, we concluded that (1) cutting and pruning rejuvenate the plants and change their expression, and the effects of cutting on gene expression are detectable within 14 years, although the cutting seedlings are still maturing during these years; (2) within three months after grafting, the rootstock is more sensitive to grafting than the scion and readily becomes mature with the effect of the scion, while the scion is not readily rejuvenated by the effect of the rootstock; and (3) LaAGL2-2 and LaAGL2-3 are more sensitive to grafting, while LaAP2-2 is impervious to it. These findings not only provide potential molecular markers to assess the state of plants but also aid in studies of the molecular mechanisms of rejuvenation.


2020 ◽  
Author(s):  
Chris Bryan ◽  
Li Lin ◽  
Junkai Xie ◽  
Janiel Ahkin Chin Tai ◽  
Katharine A. Horzmann ◽  
...  

ABSTRACTAtrazine (ATZ) is one of the most commonly used herbicides in the United States. Previous studies have hypothesized the role of ATZ as an endocrine disruptor (EDC), and developmental exposure to ATZ has been shown to lead to behavioral and morphological alterations. Specific epigenetic mechanisms responsible for these alterations, however, are yet to be elucidated. In this study, we exposed zebrafish embryos to 0.3, 3, and 30 ppb (µg/L) of ATZ for 72 hours post fertilization. We performed whole-genome bisulfite sequencing (WGBS) to assess the effects of developmental ATZ exposure on DNA methylation in female fish brains. The number of differentially methylated genes (DMG) increase with increasing dose of treatments. DMGs are enriched in neurological pathways with extensive methylation changes consistently observed in neuroendocrine and reproductive pathways. To assess the effects of DNA methylation on gene expression, we integrated our data with transcriptomic data. Four genes, namely CHD9, FRAS1, PID1, and PCLO, were differentially expressed and methylated in each dose. Overall, this study identifies specific genes and pathways with aberrant methylation and expression following ATZ exposure as targets to elucidate the molecular mechanisms of ATZ toxicity and presents ATZ-induced site-specific DNA methylation as a potential mechanism driving aberrant gene expression.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Damian Kołat ◽  
Żaneta Kałuzińska ◽  
Andrzej K. Bednarek ◽  
Elżbieta Płuciennik

Abstract The Activator Protein 2 (AP-2) transcription factor (TF) family is vital for the regulation of gene expression during early development as well as carcinogenesis process. The review focusses on the AP-2α and AP-2γ proteins and their dualistic regulation of gene expression in the process of carcinogenesis. Both AP-2α and AP-2γ influence a wide range of physiological or pathological processes by regulating different pathways and interacting with diverse molecules, i.e. other proteins, long non-coding RNAs (lncRNA) or miRNAs. This review summarizes the newest information about the biology of two, AP-2α and AP-2γ, TFs in the carcinogenesis process. We emphasize that these two proteins could have either oncogenic or suppressive characteristics depending on the type of cancer tissue or their interaction with specific molecules. They have also been found to contribute to resistance and sensitivity to chemotherapy in oncological patients. A better understanding of molecular network of AP-2 factors and other molecules may clarify the atypical molecular mechanisms occurring during carcinogenesis, and may assist in the recognition of new diagnostic biomarkers.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Deng ◽  
Chen Hou ◽  
Boxiang He ◽  
Fengfeng Ma ◽  
Qingan Song ◽  
...  

Abstract Background Gnetum is an economically important tropical and subtropical gymnosperm genus with various dietary, industrial and medicinal uses. Many carbohydrates, proteins and fibers accumulate during the ripening of Gnetum seeds. However, the molecular mechanisms related to this process remain unknown. Results We therefore assembled a full-length transcriptome from immature and mature G. luofuense seeds using PacBio sequencing reads. We identified a total of 5726 novel genes, 9061 alternative splicing events, 3551 lncRNAs, 2160 transcription factors, and we found that 8512 genes possessed at least one poly(A) site. In addition, gene expression comparisons of six transcriptomes generated by Illumina sequencing showed that 14,323 genes were differentially expressed from an immature stage to a mature stage with 7891 genes upregulated and 6432 genes downregulated. The expression of 14 differentially expressed transcription factors from the MADS-box, Aux/IAA and bHLH families was validated by qRT-PCR, suggesting that they may have important roles in seed ripening of G. luofuense. Conclusions These findings provide a valuable molecular resource for understanding seed development of gymnosperms.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-28-SCI-28
Author(s):  
Mitchell J. Weiss

Abstract Long noncoding (Lnc) RNAs are RNA transcripts greater than 200 nucleotides (nt) that regulate gene expression independent of protein coding potential (1-3). It is estimated that thousands of lncRNAs play vital roles in diverse cellular processes. LncRNAs modulate many stages of gene expression by regulating transcription, epigenetics, splicing, translation, and protein localization. We hypothesize that multiple lncRNAs are expressed specifically during erythrocyte and megakaryocyte differentiation, and are likely to have important roles. To identify lncRNAs in erythro-megakaryopoiesis, we performed strand-specific, paired-end deep sequencing (RNA-Seq) to a depth of 200 million reads per sample on two replicates each of murine Ter119+erythroblasts, CD41+ megakaryocytes and bipotential megakaryocyte-erythroid progenitors (MEPs) [lin- Kit+ Sca1- CD16/32- CD34-], and used bioinformatic filtering tools to identify approximately 1,100 candidate lncRNAs. Over 60 percent of these lncRNAs are novel unannotated transcripts with exquisite lineage-specific expression. Using erythroid and megakaryocytic primary cell ChIP-Seq for key transcription factors (TFs) GATA1, TAL1, GATA2,and FLI1, we found that the loci of lncRNAs show similar degree of TF binding as coding genes. We used the erythroid line G1E-ER4 (which expresses estrogen-activated GATA1) to confirm that lncRNAs bound by GATA1 are also directly regulated by it. Furthermore, we used histone methylation ChIP-Seq to show that most lncRNAs arise from classical “promoters” with high H3K4me3 levels and low H3K4me1 levels. Thus, we find that lncRNAs show epigenetic features similar to the promoters of coding genes and are directly regulated by similar TF networks. Comparison of the transcriptomes of mouse fetal liver and human cord blood erythroblasts demonstrated that lncRNAs are expressed in a highly species-specific fashion, i.e., most lncRNAs identifiable in one species are not transcribed in the other, even though the corresponding genomic region is present in both species. Numerous non-conserved but functional lncRNAs are reported in the literature, and the significance of conservation in lncRNA biology is greatly debated. In order to identify functional lncRNAs, we are currently performing RNAi knockdown on numerous candidates to assess how loss of function affects erythroid maturation. We are also performing HITS-CLIP of key chromatin modifying complexes and erythroid transcription factors to identify lncRNAs bound to them. Our studies are beginning to define new layers of gene regulation in normal erythro-megakaryopoiesis, which may be relevant to the pathophysiology of related disorders including various anemias, myeloproliferative and myelodysplastic syndromes and leukemias. 1. Wang K.C., Chang H.Y. Molecular mechanisms of long noncoding RNAs. Molecular Cell. 2011;43(6):904-914. Prepublished on 2011/09/20 as DOI 10.1016/j.molcel.2011.08.018. 2. Hu W., Alvarez-Dominguez J.R., Lodish H.F. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO reports. 2012;13(11):971-983. Prepublished on 2012/10/17 as DOI 10.1038/embor.2012.145. 3. Paralkar V.R., Weiss M.J. Long noncoding RNAs in biology and hematopoiesis. Blood. 2013;121(24):4842-4846. Prepublished on 2013/05/07 as DOI 10.1182/blood-2013-03-456111. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 296 (6) ◽  
pp. L888-L900 ◽  
Author(s):  
Tirumalai Rangasamy ◽  
Vikas Misra ◽  
Lijie Zhen ◽  
Clarke G. Tankersley ◽  
Rubin M. Tuder ◽  
...  

Cigarette smoking is the major risk factor for developing chronic obstructive pulmonary disease, the fourth leading cause of deaths in the United States. Despite recent advances, the molecular mechanisms involved in the initiation and progression of this disease remain elusive. We used Affymetrix Gene Chip arrays to determine the temporal alterations in global gene expression during the progression of pulmonary emphysema in A/J mice. Chronic cigarette smoke (CS) exposure caused pulmonary emphysema in A/J mice, which was associated with pronounced bronchoalveolar inflammation, enhanced oxidative stress, and increased apoptosis of alveolar septal cells. Microarray analysis revealed the upregulation of 1,190, 715, 260, and 246 genes and the downregulation of 1,840, 730, 442, and 236 genes in the lungs of mice exposed to CS for 5 h, 8 days, and 1.5 and 6 mo, respectively. Most of the genes belong to the functional categories of phase I genes, Nrf2-regulated antioxidant and phase II genes, phase III detoxification genes, and others including immune/inflammatory response genes. Induction of the genes encoding multiple phase I enzymes was markedly higher in the emphysematous lungs, whereas reduced expression of various cytoprotective genes constituting ubiquitin-proteasome complex, cell survival pathways, solute carriers and transporters, transcription factors, and Nrf2-regulated antioxidant and phase II-responsive genes was noted. Our data indicate that the progression of CS-induced emphysema is associated with a steady decline in the expression of various genes involved in multiple pathways in the lungs of A/J mice. Many of the genes discovered in this study could rationally play an important role in the susceptibility to CS-induced emphysema.


Sign in / Sign up

Export Citation Format

Share Document