scholarly journals Characterization of spray-dried Gac aril extract and estimated shelf life of β-carotene and lycopene

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11134
Author(s):  
Benjawan Thumthanaruk ◽  
Natta Laohakunjit ◽  
Grady W. Chism

Background Fresh Gac (Momordica cochinchinensis) fruit is rich in carotenoids, mainly β-carotene and lycopene, but these compounds are sensitive to degradation. Spray drying is used to encapsulate the sensitive β-carotene and lycopene with different materials. Only a few reports of using highly branched cyclodextrin (HBCD) have been published. Additionally, studies of β-carotene and lycopene losses in Gac powders during storage are limited. Therefore, the encapsulation of β-carotene and lycopene of Gac aril with HBCD by spray drying at different inlet temperatures were compared. The shelf life of β-carotene and lycopene during storage was also calculated. Methods The fresh Gac aril was separated and kept frozen before the experiment. Gac aril and water (1:5 w/v) were centrifuged at 8,000 g at 20 °C for 15 min using a high-speed centrifuge (Sorval; Dupont, Wilmington, DE, USA). The supernatant was filtered twice and concentrated until 15° Brix using a rotary evaporator (R-200; Buchi, Flawil, Switzerland). The mixture of concentrated aril extract and highly branched cyclodextrin at 5% (w/v) was dried at three inlet temperatures by a spray dryer (B-290; Buchi, Flawil, Switzerland) with drying air flow rate, compressor air pressure, and feed rate set at 473 L/h, 40 m3/h, and 3 mL/min, respectively . The physicochemical qualities, particle image morphology, and estimated storage time of β-carotene and lycopene were determined. Results Increased inlet temperatures of spray drying decreased the bulk density, β-carotene, and lycopene content of spray-dried powders significantly. The color values of dried powders had significant differences in yellowness (b*) and chroma, but not lightness (L*), redness (a*), and hue when the inlet temperature increased from 160 °C to 180 °C. The maximum reduction of β-carotene and lycopene observed during storage at 55 °C was 90.88% and 91.11% for 33 and 18 days. For β-carotene, the estimated shelf-life (retention of 50% of β-carotene) was 9.9, 48.4, and 91.6 days at 25 °C, 10 °C, and 4 °C. The shelf-life of lycopene was 26, 176, and 357 days at 25 °C, 10 °C, and 4 °C, respectively. HBCD could be potentially used as an encapsulating agent in spray-dried Gac aril, but the shelf-life of β-carotene and lycopene needs to be improved to be useful as a food ingredient.

Author(s):  
Yu Von Germaine Chng ◽  
Lee Sin Chang ◽  
Liew Phing Pui

Kuini (Mangifera odorata) is known for its intense flavour, attractive colour, rich fibre content and antioxidant properties. However, its short shelf life (bruise within a week) limits the availability of this fruit. Hence, spray drying was proposed to transform this fruit into powder to increase its application. The maltodextrin concentration of 5–20% (w/w) and inlet temperatures of 140–180°C were applied to produce kuini powders. The effect of maltodextrin concentrations at constant inlet temperature (160°C) showed that a higher amount of maltodextrin (20% w/w) produced powder with a low water activity (0.16 ± 0.01 Aw), moisture content (2.16 ± 0.60%) and hygroscopicity (20.45 ± 0.60 g/100g) but the orange colour of the powder turned pale. The kuini powder was further spray dried at different inlet temperatures at constant optimal maltodextrin concentration (20% w/w). The kuini powder that was spray dried at 160°C had the optimal properties: low water activity (0.17 ± 0.01 Aw) and hygroscopicity (22.12 ± 0.09 g/100g) with high water solubility index, WSI (79.90 ± 1.85%) and wettability (279 ± 8 s), indicating the powder can be applied as a food ingredient with high solubility. The optimal spray-drying condition for the production of kuini powder was 20% (w/w) maltodextrin concentration at 160°C inlet temperature to have the highest yield of 43.08 ± 2.77%. Eventhough the reconstituted kuini powder had lower viscosity, colour and β-carotene content than kuini juice, this study showed the feasibility of production of kuini powder using spray drying operation which may broaden its application in the food industry.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jiseon Park ◽  
Soon Bae Kwon ◽  
Hye Jeong Kwon

Abstract Objectives The purpose of this study was to investigate optimization of spray drying conditions for water-soluble powder using response surface methodology that is a statistical procedure used for optimization studies. Methods First, conditions of the extract used for spray drying were set. We compared heat water extraction (60–100 °C) with ethanol extraction (10–50%). After final selection of the method of extract used for spray drying, spray drying conditions were set. Independent variables included the additive contents of maltodextrin (X1), inlet temperature (X2), and air flow rate (X3). The dependent variables were yield, water absorption index (WAI) and total phenolic compounds. Results The yield was highest in 100 °C heat water extraction. The content of rutin was 29.77 mg/100 g in 90 °C heat water extraction, 28.07 mg/100 g in 100 °C heat water extraction and 24.24 mg/100 g in 10% ethanol extraction. The heat water extraction method at 100 °C was selected as an extract of the spray dryer. Statistical analysis revealed that independent variables significantly affected all the responses. A maximum yield was obtained at 15.55% of X1, 167.87 °C of X2 and 50.00 mL/min of X3. The water absorption index of asparagus increased with increasing MD ratio (X1), higher inlet temperature (X2) and higher air flow rate (X3). The total polyphenol contents of asparagus were higher when the MD addition ratio (X1) was 16.56%, the inlet temperature (X2) was higher and the air flow rate (X3) was higher. Conclusions In this study, extracts of asparagus using different extraction methods were compared for yield and spray-dried asparagus powders were investigated for their physicochemical characteristics. We were vary the range of the temperature, air flow rate, dextrin rate and set the best method for the functionality content of asparagus. Asparagus was spray - dried using 100 °C water extraction with high yield and high rutin content. The maximum spray drying yield was obtained at 15.55% of MD ratio, 167.87 °C of inlet temperature and 50.00 mL/min of air flow rate. There will be additional processed goods development made with what we have found. Funding Sources This study was supported by 2018 Regional Specialized Technology Development Project, Rural Development Administration, Republic of Korea. Supporting Tables, Images and/or Graphs


Author(s):  
Munawiroh S. Z. ◽  
Lipipun V. ◽  
Ritthidej G. C.

The present work describes the optimization of spray dried powder of solid lipid-based nanosystems to improve drug stability, surface modification and to obtain nanosystems after redispersion. Chitosan coated solid lipid nanoparticles containing bromocriptine mesylate (cBMSLN) were prepared by high pressure homogenization technique following by chitosan addition. For spray drying, response surface methodology with central composite rotatable design was to optimize 3 parameters: inlet temperature, pump rate and feed concentration. From regression analysis, powder yield, moisture content and size of redispersed nanoaggregates as responses were fitted well with linear, quadratic and quadratic equation models, respectively. Spherical powders with size of 4-5 µm and 70% yield were obtained at optimum parameters which were also used to prepare powder of chitosan coated nanostructured lipid carriers containing BM (cBMNLC). Amorphous characteristics were confirmed from powder XRD patterns and DSC chromatograms in all prepared powders. Redispersion of powders yielded nanosystems of some original nanosize and a greater portion of larger size. Smoother surface of NLC systems was observed, so was with chitosan coating. Drug entrapment was >85% but significantly decreased in chitosan coated formulations while drug retention after spray drying showed opposite results. After storage, spray dried powder could retain higher drug content than the original nanosystems. Obviously, NLC systems had better drug stability results than SLN systems. It could be concluded that redispersible spray dried powders of chitosan coated lipid-based nanosystems especially NLC systems were successfully obtained with surface modification, nanoaggregate size range and improved drug stability.Keywords: Solid lipid nanoparticles, nanostructure lipid carriers, chitosan, spray drying, optimization, redispersion, bromocriptine mesylate


Author(s):  
Jianping Ni ◽  
Chen Gong ◽  
Zhenghua Su ◽  
Chao Tian

Abstract One of the main manufacturing challenges is to obtain dried cellulose nanofibrils (CNFs) so that they can be cost effectively transported to customers. This work presents a study on using two methods of drying: freeze drying and spray drying; these dried CNFs were then characterized. The dried CNFs from either freeze drying or spray drying could not recover their original state after simple re-dispersion in water. Compared to spray dried CNFs, the microstructure of the freeze dried CNFs remained in a better shape. This was because the packing of nanofibrils as a result of freeze drying was not as tight as that from spray drying. It was demonstrated by the lower final mass residue and crystallinity of the freeze-dried CNFs, which led to better re-dispersion in water. X-ray diffractometry proved the occurrence of aggregation/hornification of the dried CNFs with increased crystallinity. Time-dependent sedimentation confirmed that the dried CNFs were incapable of forming stable water-re-dispersible suspensions.


2010 ◽  
Vol 16 (4) ◽  
pp. 289-296 ◽  
Author(s):  
P. Salvador ◽  
E. Saguer ◽  
D. Parés ◽  
C. Carretero ◽  
M. Toldrà

This work focuses on studying the effects of pH (7.0 and 4.5) and protein concentration on the foaming and emulsifying properties of fresh (F) and spray-dried (SD) porcine red cell protein (RCP) concentrates in order to evaluate the proper use of this blood protein as a functional food ingredient. Also, protein solubility is measured through the pH range from 3.0 to 8.0. In each case, all concentrates show a high solubility, although this is significantly affected by pH. Spray drying slightly reduces the solubility at mild acid and neutral conditions. The foaming capacity is found to be dependent on pH as well as on the drying treatment. SD-RCP concentrates show better foaming capacity than F-RCP. The minimum protein concentration required to attain the highest foaming capacity is found under acid pH for the spray-dried concentrates. Although F-RCP shows low foam stability at acid and neutral pH, spray drying and protein content enhance the stability of foams. Emulsifying properties show dependence on pH as well as on protein content. Furthermore, spray drying affects the emulsifying properties but in different ways, depending on pH and protein concentration.


2019 ◽  
Vol 16 (04) ◽  
pp. 743-750
Author(s):  
Noraziani Zainal Abidin ◽  
Saiful Irwan Zubairi ◽  
Haslaniza Hashim

ABSTRACT: Spray drying is widely spread technique for drying of liquid products especially fruit juices such as noni juice. However, during spray drying of noni juice stickiness problem commonly occurs due to low molecular weight sugars (sucrose, glucose and fructose). The aim of the present research was to determine the impact of Teflon surface modification on the yield of spray dried Noni juice and deposition flux. Different exposure time of feed spray was undertaken prior to adhesion flux weight determination. Three different sets of inlet temperature (100 oC, 150 OC and 190 oC) and exposure times (of 15 min, 30 min, 60 min, 75 min, 90 min and 115 min) were tested. Samples were evaluated for contact angle, weight of adhesion flux, hygroscopicity and moisture content. There was a sudden increased in deposition flux (p<0.05) as the temperature increased. At 150 and 190°C, the weight of deposition flux was not significant (p>0.05) for both plate materials. The borosilicate plates (BP) registered up to 80% deposit removal whilst Teflon plate (TP) recorded only 20%. Physical observation of the Teflon plates showed that some areas of the plate (100 °C) were fully clear from any particles. Nevertheless, for the borosilicate glass plates, the primary adhered particles tend to retain and smeared along the plates. In addition, there was a substantially negative relationship between the contact angle and adhesion weight, (r = -0,924, p<0.01). The negative connection suggests that by increasing the contact angle, the adhesion weight will decrease and vice versa. The contact angle of the Teflon (PTEFE) surface was approximately 117.2 ± 1.4°, which provided an excellent hydrophobic surface. In this research, the powder with the lowest amount of hygroscopicity was gained at 190 oC using the Teflon plate. For that reason, surface modification was indeed amplified the surface hydrophobicity thus decreasing the deposition flux.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1943
Author(s):  
Cristina Patanè ◽  
Sarah Siah ◽  
Alessandra Pellegrino ◽  
Salvatore L. Cosentino ◽  
Laura Siracusa

The Mediterranean long shelf-life tomato (or long storage tomato) is a plant traditionally cultivated under no irrigation in the Southern regions of Italy, whose fruits have typical high sensory and nutritional quality. However, yield levels are kept low under current cultivation conditions. In this study, the effects of repeated cycles of drying and rehydration on crop productivity and nutritional quality of fruits in terms of polyphenols and carotenoids content were assessed in long shelf-life tomatoes cultivated in a typical semi-arid area of Southern Italy. The three local Sicilian landraces ‘Custonaci’, ‘Salina’ and ‘Vulcano’, and the commercial tomato hybrid ‘Faino’ (control) were submitted to three irrigation treatments: DRY (no irrigation); IRR (long-season full irrigation); REW (drought/rewatering cycles). Total 450, 4710, and 1849 m3 ha−1, were distributed in DRY, IRR, and REW, respectively. At harvest, fruit yield, polyphenols (as total, flavonoids, and hydroxycinnamoyl quinic acids-HCQA), and carotenoids contents (lycopene and β-carotene) were measured. All cultivars benefitted from very limited irrigation in REW, raising their productivity (up to +147% in ‘Vulcano’) with respect to that of plants overstressed in DRY. Irrigation water use efficiency in REW was higher than that in IRR. Water shortage in REW led to a polyphenols content of fruits that was slightly lower (171.1 μg g−1) than that in DRY, but higher than that in IRR (116.8 μg g−1). All local landraces had greater contents (>160 μg g−1) than control (113.0 μg g−1). Under REW and DRY, the two landraces ‘Salina’ and ‘Vulcano’ produced fruits with the same polyphenols and flavonoids contents. Overall, the two water stressed treatments (DRY and REW) did not differ for HCQA content (>66 μg g−1), which was significantly higher than that in the irrigated plots (<50.55 μg g−1). Lycopene content in DRY and REW exceeded 100 μg g−1; among local types, ‘Vulcano’ exhibited the highest content (106.7 μg g−1). The β-carotene content did not change in ‘Custonaci’ and ‘Salina’, whereas in ‘Vulcano’ it was greater in DRY and REW. Only in ‘Faino’ water limitation in REW exerted a clear promoting effect of on β-carotene content of fruits. The results of the present study reveal how rewatering after long-lasting drought periods is beneficial to long shelf-life tomatoes in terms of productivity. Appropriate drought cycles in REW may also help the fruits to retain high nutritional levels.


Author(s):  
Lee Sin CHANG ◽  
Siew May EAU YONG ◽  
Liew Phing PUI

Easily perishable and highly seasonal “Terung Asam” (Solanum lasiocarpum Dunal) fruit, a geographical indication plant of Sarawak, was converted into powder for shelf life extension. Spray drying was employed with a range of inlet temperature (140 - 180 °C) and the slurry was cooperated with food graded maltodextrin (5 - 25 % w/w) as food processing aid. The spray-dried “Terung Asam” powders were analysed for process yield, moisture content (Mc), water activity (Aw), hygroscopicity (Hg), water solubility index (WSI), bulk density and colour. The reconstituted powders were assessed by determining total soluble solid (TSS), pH, viscosity and colour. The results indicated that the increase in inlet temperature had resulted in reduction in Mc, Aw, and Hg. In addition, higher concentration of maltodextrin led to reduction in Mc and Hg. At the spray drying inlet temperature of 160 °C and feed added with 25 % w/w maltodextrin, “Terung Asam” powder with the following optimal physicochemical properties was produced: Mc, 2.95±0.42 %; Aw, 0.11±0.02; Hg, 17.76±0.28 %; WSI, 98.89±1.37 %; and wettability, 621.60±119.03 s. The optimized reconstituted powder had lower L*, a* and b* values than the fresh juice, indicating it is lighter in colour, less reddish and less yellowish. Overall, the production of “Terung Asam” using spray drying is feasible with the addition of food processing aid.


2021 ◽  
pp. 108201322110037
Author(s):  
D Priscilla Mercy Anitha ◽  
Periyar Selvam Sellamuthu

This study aimed to assess the effectiveness of finger millet milk complex (almond gum with maltodextrin) to encapsulate the isolated Lactobacillus strains. The wall materials were optimized based on its encapsulation efficiency, antioxidant activity, total phenol content and encapsulation yield. The strains were spray-dried at the optimized condition: 120 °C inlet temperature, maltodextrin 30% and almond gum 1.5%. Survival count of microencapsulated Lactobacillus plantarum RS09 and RS23 strains were 7.91 and 7.83 CFU/g respectively. Viability of microencapsulated strains and free cells under low pH, bile salt, simulated gastric juice and intestinal juice were assessed. Strain RS09 exhibited the highest viable count. Addition of almond gum and finger millet milk increased the phenolic content and offered a protective effect to the strains during spray drying. Results also showed that the powders were amorphous with partial irregularities and a smooth surface with less dents. Hence, they could be used as potential encapsulating agents during spray drying.


1996 ◽  
Vol 11 (8) ◽  
pp. 2020-2028 ◽  
Author(s):  
Ming-Hung Lo ◽  
Feng-Huei Cheng ◽  
Wen-Cheng J. Wei

A route to prepare nanometer-sized Mo particulates in Al2O3 was attempted by a combination of solution reactions in molecular scale and forcing precipitation by a spray-drying technique. MoO3 was first dissolved in ammonia water and then added in the slurry with high purity, submicrometer Al2O3 powder. Mixed suspension was spray-dried, and then the dried granules were reduced by hydrogen gas and further hot-pressing to a bulky composite at various temperatures. Dissolution of Mo oxide, adsorption reactions on the alumina surface, and surface potential of alumina particles in homogeneous ammonia suspension were studied. Characterization of the granules, including compactability, flowing properties, surface morphology, grain growth of Mo and Al2O3, and mixing homogeneity, were examined. Homogeneity of the spray-dried granules was determined by the calculation of mixing index and the observation of the microstructure of the sintered body. The existence of intergranular, intragranular, and nanosized Mo particulates within Al2O3 grains was observed by transmission electron microscopy (TEM). All the evidence revealed that homogeneous composites with nanometer-sized Mo had been successfully prepared by this attempt with the proposed chemical roue and following the spray-drying process.


Sign in / Sign up

Export Citation Format

Share Document