scholarly journals Interleukin 20 receptor A expression in colorectal cancer and its clinical significance

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12467
Author(s):  
Rui Liu ◽  
Honghao Yin ◽  
Xin Sun ◽  
Songyi Liu ◽  
Ang Wang ◽  
...  

Background Interleukin 20 receptor A (IL20RA) has been shown to play a role in the establishment and progression of multiple tumors. However, the expression of this protein in colorectal cancer (CRC) and its correlation with the clinicopathological parameters of CRC have remained unclear. Methods A total of 323 paraffin sections including CRC tissues and adjacent normal tissues after surgery were collected. IL20RA protein expression was detected by immunohistochemical staining. The difference expression of IL20RA mRNA between CRC and normal tissues was also explored in the Oncomine and GEO databases. In addition, the IL20RA-related differentially expressed genes were analyzed in TCGA database and enrichment analysis was conducted to explore the cell functions and pathways related to IL20RA expression. Results There was increased IL20RA expression in CRC compared with that in normal tissues. High IL20RA expression was associated with greater tumor diameter, lymph node metastasis, and poor TNM stage in CRC, while also being suggestive of poor prognosis. The main pathways of IL20RA-related differentially expressed genes in TCGA were protein heterodimerization activity, oxygen binding, oxygen transporter activity, hormone activity, and lipid transporter activity. Meanwhile, IL20RA-related differentially expressed genes were mainly enriched in peroxidase, nucleotide stimulant repair, fatty acid metabolism, basal transcription factor, and RNA degradation. Conclusions IL20RA might have a role as a biomarker for CRC. Its upregulation might contribute to an aggressive phenotype in CRC. IL20RA’s involvement in the development and progression of CRC might occur through it affecting fatty acid metabolism, oxygen binding, oxygen transport, and hormone activity.

2021 ◽  
Author(s):  
Feifei Liu ◽  
Yu Wang ◽  
Wenxue Li ◽  
Diancheng Li ◽  
Yuwei Xin ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies of the digestive system; the progression and prognosis of which are affected by a complicated network of genes and pathways. The aim of this study was to identify potential hub genes associated with the progression and prognosis of colorectal cancer (CRC).Methods: We obtained gene expression profiles from GEO database to search differentially expressed genes (DEGs) between CRC tissues and normal tissue. Subsequently, we conducted a functional enrichment analysis, generated a protein–protein interaction (PPI) network to identify the hub genes, and analyzed the expression validation of the hub genes. Kaplan–Meier plotter survival analysis tool was performed to evaluate the prognostic value of hub genes expression in CRC patients.Results: A total of 370 samples, involving CRC and normal tissues were enrolled in this article. 283 differentially expressed genes (DEGs), including 62 upregulated genes and 221 downregulated genes between CRC and normal tissues were selected. We finally filtered out 6 hub genes, including INSL5, MTIM, GCG, SPP1, HSD11B2, and MAOB. In the database of TCGA-COAD, the mRNA expression of INSL5, MT1M, HSD11B2, MAOB in tumor is lower than that in normal; the mRNA expression of SPP1 in tumor is higher than that in normal. In the HPA database, the expression of INSL5, GCG, HSD11B2, MAOB in tumor is lower than that in normal tissues; the expression of SPP1 in the tumor is higher than that in normal tissues. Survival analysis revealed that INSL5, GCG, SPP1 and MT1M may serve as prognostic biomarkers in CRC. Conclusions: We screened out six hub genes to predict the occurrence and prognosis of patients with CRC using bioinformatics methods, which may provide new targets and ideas for diagnosis, prognosis and individualized treatment for CRC.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Meng Zhang ◽  
Fang Li ◽  
Xiang-fei Ma ◽  
Wen-ting Li ◽  
Rui-rui Jiang ◽  
...  

Abstract Background The distribution and deposition of fat tissue in different parts of the body are the key factors affecting the carcass quality and meat flavour of chickens. Intramuscular fat (IMF) content is an important factor associated with meat quality, while abdominal fat (AbF) is regarded as one of the main factors affecting poultry slaughter efficiency. To investigate the differentially expressed genes (DEGs) and molecular regulatory mechanisms related to adipogenic differentiation between IMF- and AbF-derived preadipocytes, we analysed the mRNA expression profiles in preadipocytes (0d, Pre-) and adipocytes (10d, Ad-) from IMF and AbF of Gushi chickens. Results AbF-derived preadipocytes exhibited a higher adipogenic differentiation ability (96.4% + 0.6) than IMF-derived preadipocytes (86.0% + 0.4) (p < 0.01). By Ribo-Zero RNA sequencing, we obtained 4403 (2055 upregulated and 2348 downregulated) and 4693 (2797 upregulated and 1896 downregulated) DEGs between preadipocytes and adipocytes in the IMF and Ad groups, respectively. For IMF-derived preadipocyte differentiation, pathways related to the PPAR signalling pathway, ECM-receptor interaction and focal adhesion pathway were significantly enriched. For AbF-derived preadipocyte differentiation, the steroid biosynthesis pathways, calcium signaling pathway and ECM-receptor interaction pathway were significantly enriched. A large number of DEGs related to lipid metabolism, fatty acid metabolism and preadipocyte differentiation, such as PPARG, ACSBG2, FABP4, FASN, APOA1 and INSIG1, were identified in our study. Conclusion This study revealed large transcriptomic differences between IMF- and AbF-derived preadipocyte differentiation. A large number of DEGs and transcription factors that were closely related to fatty acid metabolism, lipid metabolism and preadipocyte differentiation were identified in the present study. Additionally, the microenvironment of IMF- and AbF-derived preadipocyte may play a significant role in adipogenic differentiation. This study provides valuable evidence to understand the molecular mechanisms underlying adipogenesis and fat deposition in chickens.


2021 ◽  
Author(s):  
M. Kanakachari ◽  
R. Ashwini ◽  
R. N. Chatterjee ◽  
T. K Bhattacharya

Abstract Background: Chicken is one of the important meat sources throughout the globe. Muscle development and egg production are important genetic traits in commercially raising chickens. However, not much information is available in the fast and slow growth of chicken to determine the expression of genes involved in muscle development and egg production in embryo initiation and developmental stages. This study was designed to investigate why improved Aseel (PD4) growing slowly compared with the control broiler (CB), microarray was conducted with the 7th-day embryo and 18th-day thigh muscle of improved Aseel (PD4) and control broiler (CL), respectively.Results: In the differential transcripts screening, all the transcripts obtained by microarray of slow and fast growth groups were screened by fold change ≥1 and false discovery rate (FDR) <0.05. In total, 19022 transcripts were differentially expressed between the 7th-day embryo and 18th-day thigh muscle of improved Aseel compared to the control broiler. Further analysis showed that a high number of transcripts are differentially regulated in the 7th-day improved Aseel embryo (15382) and fewer transcripts were differentially regulated (3640) in the 18th-day thigh muscle of improved Aseel compared to control broiler. In the 7th and 18th-day improved Aseel embryo, 10127, 2102, 5255, and 1538 transcripts were up and down-regulated, respectively. The commonly up and down-regulated transcripts are 545 and 381 between the 7th and 18th-day of embryos. In this study, we have selected 18 Gallus gallus candidate reference genes from NCBI and total RNA was isolated from control broiler, improved Aseel embryo tissues, and studied their expression profiles by real-time quantitative PCR (qPCR). The best housekeeping gene was identified by using geNorm, NormFinder, BestKeeper, Delta CT, and RefFinder analytical software. The result showed that the TFRC gene is the most stable and further it is used for qPCR data normalization. Further, to validate the differentially expressed genes (DEGs) related to muscle growth, myostatin signaling and development, fatty acid metabolism genes in improved Aseel (PD4) and control broiler embryo tissues by qPCR. Conclusion: Our study identified DEGs that regulate myostatin signaling and differentiation pathway, glycolysis and gluconeogenesis, fatty acid metabolism, Jak-STAT, mTOR, and TGF-β signaling pathways, tryptophan metabolism, PI3K-Akt signaling pathways in improved Aseel. The results revealed that the gene expression architecture is present in the improved Aseel exhibiting embryo growth that will help to improve muscle development, differentiation, egg production, as well as protein synthesis in improved Aseel native chicken. Our findings may be used as a model for improving the growth in improved Aseel as well as optimizing the growth in the control broiler.


2017 ◽  
Vol 8 (6) ◽  
pp. e2865-e2865 ◽  
Author(s):  
Ting Ni ◽  
Zihao He ◽  
Yuanyuan Dai ◽  
Jingyue Yao ◽  
Qinglong Guo ◽  
...  

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 388-388
Author(s):  
Qian Zhu ◽  
Jingjing Wu ◽  
Daxue He ◽  
Xuemei Lian

Abstract Objectives To investigate the effects of plant sterols intake on systematic and tissue specific lipid metabolism in C57BL/6J mice. Methods Male C57BL/6J mice were randomly divided into control diet group (CS) and plant sterol group (PS, 2% plant sterols). After 28 weeks of continuous feeding, the serum of the mice were collected for biochemical and mass spectrometry tests. Serum levels of total cholesterol (TC), triglyceride (TG) and free sterols were determined. The livers and lungs were collected for free sterol quantification and RNA-seq analysis. Results Compared with the CS group, 2% plant sterols intake significantly reduced the levels of TC in the serum of mice (P &lt; 0.05), with the TG level unchanged. The quantitative results of free sterols showed that the concentration of campesterol were increased, and the cholestanol levels were decreased significantly in the serum and liver of the PS group mice. The results of RNA-seq analysis were used to further evaluate its impact on the lipid metabolism related gene expression profile in the livers and lungs. The results showed that HMGCR, SQLE, HMGCS1, SREBF1, and other genes related to cholesterol synthesis in the PS group were significantly up-regulated in the liver, but not in the lung; Among the first 20 targeting pathways related to the action of plant sterols, the liver differentially expressed genes were enriched in lipid metabolism (steroid biosynthesis, terpenoid skeleton biosynthesis, peroxisome, bile acid secretion, PPAR, MAPK, fatty acid metabolism.), inflammation related (Cell adhesion molecules, leukocyte trans-endothelial migration) and amino acid metabolism (glutathione, valine, leucine and isoleucine metabolism). The differential genes in lung tissue are enriched in lipid metabolism (acetone metabolism, fatty acid metabolism, insulin resistance, terpenoid skeleton biosynthesis, iron death, PPAR), cell function (internal Swallowing, aging) and vascular smooth muscle contraction etc. Conclusions Differentially expressed gene networks reflect the multi-dimensional regulation of plant sterols on tissue specific lipid metabolism, which lays a good foundation for further revealing its mechanism. Funding Sources Yihaikerry Nutrition and Food Safety Foundation, Chinese Nutrition Society; Project of Technology Innovation and Application, Chongqing, China


2018 ◽  
Author(s):  
Vibeke Andersen ◽  
Ulrich Halekoh ◽  
Anne Tjønneland ◽  
Ulla Vogel ◽  
Tine Iskov Kopp

Red and processed meat have been associated with increased risk of colorectal cancer (CRC), whereas long-term use of non-steroid anti-inflammatory drugs (NSAIDs) may reduce the risk. The aim was to investigate potential interactions between meat intake, NSAID use, and gene variants in fatty acid metabolism and NSAID pathways in relation to the risk of CRC. A nested case-cohort study of 1038 CRC cases and 1857 randomly selected participants from the Danish prospective “Diet, Cancer and Health” study encompassing 57,053 persons was performed using the Cox proportional hazard models. Gene variants in SLC25A20, PRKAB1, LPCAT1, PLA2G4A, ALOX5, PTGER3, TP53, CCAT2, TCF7L2, BCL2 were investigated. CCAT2 rs6983267 was associated with risk of CRC per se (p<0.01). Statistically significant interactions were found between intake of red and processed meat and CCAT2 rs6983267, TP53 rs1042522, LPCAT1 rs7737692, SLC25A20 rs7623023 (pinteraction=0.04, 0.04, 0.02, 0.03, respectively), and use of NSAID and alcohol intake and TP53 rs1042522 (pinteraction=0.04, 0.04, respectively) in relation to risk of CRC. No other consistent associations or interactions were found. This study replicated an association of CCAT2 rs6983267 with CRC and an interaction between TP53 rs1042522 and NSAID in relation to CRC. Interactions between genetic variants in fatty acid metabolism and NSAID pathway and intake of red and processed meat were found. Our results suggest that meat intake and NSAID use affect the same carcinogenic mechanisms. All new findings should be sought replicated in independent prospective studies. Future studies on the cancer-protective effects of aspirin/NSAID should include gene and meat assessments.


2009 ◽  
Vol 31 (3) ◽  
pp. 466-472 ◽  
Author(s):  
Birgit Hoeft ◽  
Jakob Linseisen ◽  
Lars Beckmann ◽  
Karin Müller-Decker ◽  
Federico Canzian ◽  
...  

2019 ◽  
Author(s):  
Xiaoyuan Fu ◽  
Miaomiao Tao ◽  
Hongbo Ma ◽  
Cancan Wang ◽  
Yanyan Li ◽  
...  

Abstractlymphangiogenesis as a process is colorectal cancer first metastasis via lymphatic vessels to proximal lymph nodes. The fuel metabolism in mitochondrial and support proliferation of lymphatic endothelial cells (LECs) remain elusive during lymphangiogenesis in tumor hypoxic microenvironment. Recent studies report that loss of SEMA3F critically contributes to lymphangiogenesis of the CRCs. Here, we silenced SEMA3F expression of CRCs and co-culture with hLECs, the tubulogenesis capacity and hLECs migration were escalated in the hypoxia, the hLECs mainly relied on fatty acid metabolism not aerobic glycolysis during lymphangiogenesis. SEMA3F-deficient CRCs up-regulated PMAKP expression and phosphorylation of hLECs, and activated its peroxisome proliferator-activated receptor (PPARs) and Peroxisome proliferator–activated receptor gamma coactivator-1 alpha (PGC-1a) facilitated their switched toward fatty acids (FA) catabolism. Furthermore, we observed that activation of the PGCI-PPAR lipid oxidation signaling pathway in hLECs was caused by the secretion of interleukin-6 by tumor cells.Taken together, this study indicates that CRCs with SEMA3F expression depletion significantly promotes lymphangiogenesis in hypoxia and faciliates the secretion of IL-6 in tumor cell, and activates mitochondria fatty acids oxidation (FAO) reaction in the hLECs by PGCI-PPAR signaling pathways to support its growth.


Sign in / Sign up

Export Citation Format

Share Document