scholarly journals Gut microbiota of obese and diabetic Thai subjects and interplay with dietary habits and blood profiles

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9622
Author(s):  
Lucsame Gruneck ◽  
Niwed Kullawong ◽  
Kongkiat Kespechara ◽  
Siam Popluechai

Obesity and type 2 diabetes mellitus (T2DM) have become major public health issues globally. Recent research indicates that intestinal microbiota play roles in metabolic disorders. Though there are numerous studies focusing on gut microbiota of health and obesity states, those are primarily focused on Western countries. Comparatively, only a few investigations exist on gut microbiota of people from Asian countries. In this study, the fecal microbiota of 30 adult volunteers living in Chiang Rai Province, Thailand were examined using next-generation sequencing (NGS) in association with blood profiles and dietary habits. Subjects were categorized by body mass index (BMI) and health status as follows; lean (L) = 8, overweight (OV) = 8, obese (OB) = 7 and diagnosed T2DM = 7. Members of T2DM group showed differences in dietary consumption and fasting glucose level compared to BMI groups. A low level of high-density cholesterol (HDL) was observed in the OB group. Principal coordinate analysis (PCoA) revealed that microbial communities of T2DM subjects were clearly distinct from those of OB. An analogous pattern was additionally illustrated by multiple factor analysis (MFA) based on dietary habits, blood profiles, and fecal gut microbiota in BMI and T2DM groups. In all four groups, Bacteroidetes and Firmicutes were the predominant phyla. Abundance of Faecalibacterium prausnitzii, a butyrate-producing bacterium, was significantly higher in OB than that in other groups. This study is the first to examine the gut microbiota of adult Thais in association with dietary intake and blood profiles and will provide the platform for future investigations.

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1151-1151
Author(s):  
Marina Brown ◽  
Ginger Reeser ◽  
Leila Shinn ◽  
Matthew Browning ◽  
Andiara Schwingel ◽  
...  

Abstract Objectives Urbanization has reduced environmental microorganism exposure, with most Americans spending over 90% of their time indoors. However, gardening remains a viable means of exposure to soil microorganisms and harvesting of edible produce. Accordingly, we aimed to determine relations between gardening, dietary habits, and gut microbiota. Methods Gardening families (N = 10) and non-gardening (control) families (N = 9) were enrolled in a longitudinal pilot trial. Families included two adults and a child (5–18 years) for a total sample size of 54 participants. Fecal samples were collected prior to and at the end of the gardening season. Garden soil samples (n = 9) were collected prior to and at the end of the season. Diet history questionnaires were collected at the beginning and end of the study to measure Healthy Eating Index (HEI) scores. Fecal and soil DNA were extracted, sequenced (V4 region of 16S rDNA gene), and analyzed using DADA2 and QIIME2. Alpha diversity measures were assessed, including Faith's phylogenetic diversity (PD) and observed operational taxonomic units (OTUs). Results Gardening families had significantly more fecal OTUs compared to control families (172.3 ± 44.2 vs. 157.0 ± 44.2, respectively; P = 0.03). Gardening families had greater (P = 0.02) Faith's PD scores and tended (P = 0.08) to have more fecal OTUs than the control group at peak gardening season. In the gardening families, fecal OTUs and Faith's PD were numerically but not statistically greater at the end of the season compared to baseline (all p’s > 0.05). Prior to the gardening season, gardening adults had greater HEI scores compared to control families (57 ± 9.1 vs. 49 ± 8.8, P = 0.03). HEI scores were not different between groups at the end of the study. Conclusions This study revealed that the fecal microbiota of families that garden differs from non-gardening families, and there are detectable changes in the fecal microbial community of gardeners and their family members over the course of the gardening season. Further research is needed to understand the role of diet in these changes and if microbes within the soil move between the soil and gastrointestinal environments. Funding Sources This research was funded by the Christopher Family Foundation Food and Family Grant Program.


2020 ◽  
Author(s):  
Rebiya Nuli ◽  
Jiaoyu Shan ◽  
Bing Zhang ◽  
Rui Li ◽  
Yaqun Guan

Abstract Background: Type 2 diabetes (T2DM) is a top risk factor for health in China. Gut microbiota, genetic factors and lipids metabolism play important role in development of T2DM. In this study, we investigated the relationship between the gut microbiota and omentin-1 gene polymorphism to explore the interaction between host gene and gut microbiota in Uyghur T2DM. Methods: A total of 98 newly diagnosed Uyghur T2DM patients and 99 healthy normal controls (NC) enrolled into this study according to inclusion criteria. The total DNAs was extracted from the fecal microbiota. Abundance of the Lactobacillus genus, Bacteroides thetaiotaomicron and Clostridium in the gut microbiota was determined with 16S rDNA gene Real-time fluorescence quantitative PCR amplification. PCR-PFLP was applied to determine the genotypes of Val109Asp variant (rs2274907) in the Omentin-1 gene. And the relationship between rs2274907 and gut microbiota was assessed. Results: There were no significant differences of the Val109Asp variant (rs2274907) between T2DM and NC group. The abundance of Lactobacillus genus and Clostridium genus was lower in newly diagnosed T2DM group than in the NC group (P<0.05). Serum insulin, LDL-C, the abundances of Lactobacillus genus and Clostridium genus were the risk factors of T2DM. (OR=1.094 95%CI 1.014-1.180), (OR=3.868 95%CI 1.250-11.971), (OR=0.288 95%CI 0.145-0.571), (OR=0.044 95%CI 0.012-0.154). Conclusions: The abundance of Lactobacillus and Clostridium genus may be related to the pathogenesis of new-onset T2DM in Uyghur population, the mechanism of which needs to be further studied. The interactive relationship between the gut microbiota and omentin-1 gene polymorphism in newly diagnosed T2DM was not observed in this study.


2019 ◽  
Vol 8 (10) ◽  
pp. 1605 ◽  
Author(s):  
Pełka-Wysiecka ◽  
Kaczmarczyk ◽  
Bąba-Kubiś ◽  
Liśkiewicz ◽  
Wroński ◽  
...  

Accumulating evidence indicates the potential effect of microbiota on the pathogenesis and course of schizophrenia. However, the effects of olanzapine, second-generation antipsychotics, on gut microbiota have not been investigated in humans. This study aimed to analyze fecal microbiota in schizophrenia patients treated with olanzapine during six weeks of their hospital stay. After a seven-day washout from all psychotropic medications, microbiota compositions were evaluated at baseline and after six weeks of hospitalization using 16S rRNA sequencing. The study was conducted in 20 inpatients, who followed the same hospital routine and received 5–20 mg daily doses of olanzapine. Olanzapine treatment was associated with clinical improvements in all patients and significant increases in body mass index in females, but not changes in gut microbiota compositions and predicted function. The severity of symptoms at the beginning of treatment varied in accordance with the predicted metabolic activity of the bacteria. The present findings indicate that the microbiota of schizophrenia patients is highly individual and has different taxonomical (Type 1, with a predominance of Prevotella, and Type 2 with a higher abundance of Bacteroides, Blautia and Clostridium) and functional clusters, and it does not change following six weeks of olanzapine therapy; in addition, the microbiota is not associated with either the weight gain observed in women or the effectiveness of olanzapine therapy.


2018 ◽  
Vol 78 (02) ◽  
pp. 177-188 ◽  
Author(s):  
F. Fava ◽  
L. Rizzetto ◽  
K. M. Tuohy

Overweight-related metabolic diseases are an important threat to health in the Western world. Dietary habits are one of the main causative factors for metabolic syndrome, CVD and type 2 diabetes. The human gut microbiota is emerging as an important player in the interaction between diet and metabolic health. Gut microbial communities contribute to human metabolism through fermentation of dietary fibre and the result of intestinal saccharolytic fermentation is production of SCFA. Acetate, propionate and butyrate positively influence satiety, endocrine system, glucose homeostasis, adipogenesis, lipid oxidation, thermoregulation, hepatic gluconeogenesis, endothelial function and gut barrier integrity, and these mechanisms have all been linked to protection from type 2 diabetes, hypertension and cardiovascular health. The gut microbiota is also involved in bile acid metabolism and regulating their cell signalling potential, which has also been shown to modify pathways involved in metabolic health. Similarly, the gut microbiota renders recalcitrant plant polyphenols into biologically active small phenolic compounds which then act systemically to reduce metabolic disease risk. This review summarises how dietary patterns, specific foods and a healthy lifestyle may modulate metabolic health through the gut microbiota and their molecular cross-talk with the host.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3719
Author(s):  
Daniela Maria Tanase ◽  
Evelina Maria Gosav ◽  
Ecaterina Neculae ◽  
Claudia Florida Costea ◽  
Manuela Ciocoiu ◽  
...  

Type 2 diabetes mellitus (T2DM) remains one of the most problematic and economic consumer disorders worldwide, with growing prevalence and incidence. Over the last years, substantial research has highlighted the intricate relationship among gut microbiota, dysbiosis and metabolic syndromes development. Changes in the gut microbiome composition lead to an imbalanced gastrointestinal habitat which promotes abnormal production of metabolites, inflammatory status, glucose metabolism alteration and even insulin resistance (IR). Short-chain fatty acids (SCFAs), trimethylamine N-oxide (TMAO), lipopolysaccharide, aromatic amino acids and their affiliated metabolites, contribute to T2DM via different metabolic and immunologic pathways. In this narrative review, we discuss the immunopathogenic mechanism behind gut dysbiosis, T2DM development and the major known diabetic microvascular complications (retinopathy, neuropathy and nephropathy), the beneficial use of pre- and pro-biotics and fecal microbiota transplantation in T2DM management and new findings and future perspectives in this field.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lili Zhang ◽  
Jinjin Chu ◽  
Wenhao Hao ◽  
Jiaojiao Zhang ◽  
Haibo Li ◽  
...  

Gut microbiota has attracted widespread attention due to its crucial role in disease pathophysiology, including type 2 diabetes mellitus (T2DM). Metabolites and bacterial components of gut microbiota affect the initiation and progression of T2DM by regulating inflammation, immunity, and metabolism. Short-chain fatty acids, secondary bile acid, imidazole propionate, branched-chain amino acids, and lipopolysaccharide are the main molecules related to T2DM. Many studies have investigated the role of gut microbiota in T2DM, particularly those butyrate-producing bacteria. Increasing evidence has demonstrated that fecal microbiota transplantation and probiotic capsules are useful strategies in preventing diabetes. In this review, we aim to elucidate the complex association between gut microbiota and T2DM inflammation, metabolism, and immune disorders, the underlying mechanisms, and translational applications of gut microbiota. This review will provide novel insight into developing individualized therapy for T2DM patients based on gut microbiota immunometabolism.


Author(s):  
К. О. Shyshkan-Shyshova ◽  
O. V. Zinych

Recent advances in molecular and genetic research have illuminated the mechanisms of interaction between genes and the environment, which are partially mediated by so-called epigenetic modifications. These changes do not affect the primary structure of genes’ DNA, but cause persistent changes in their expression, which can be inherited by subsequent generations and determine the formation of the corresponding metabolic phenotype. Obesity, metabolic syndrome and type 2 diabetes mellitus develop on the basis of insulin resistance in the presence of a genetic predisposition under the influence of external factors, including environmental influences and lifestyle characteristics, in particular dietary habits. Today it has been proven that changes in the profile of intestinal microbiota is an important modifiable factor in the development of dysmetabolic states. Gut microbiota plays a key role in the regulation of many metabolic processes, inflammation, the activity of the immune system and the general state of the body. Diets enriched with fats and carbohydrates have been found to result in the decreased diversity and changes in gut microbiota composition, such as decreased levels of Bacteroidetes and increased Firmicutes. The accumulated data of clinical and experimental studies indicate a link between disorders in the composition and function of the intestinal microbiome (dysbiosis) and obesity, impaired glycemic control, and, consequently, the pathophysiology of type 2 diabetes. These induced epigenetic modifications are regulated by metabolites produced by the gut microbiota, such as short-chain fatty acids (acetate, propionate, butyrate), cysteine, mercaptans, which can influence epigenetic processes through their effects on DNA methylation, acetylation and histone modification. Moreover, the direct effects of the microbial environment on the secretion of incretins by intestinal enteroendocrine cells play an important role. The review discusses some of the mechanisms of epigenetic modifications through which the microbiota influences the development of obesity and type 2 diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document