scholarly journals Environmental Influences on the Human Gut Microbiota: A Longitudinal Pilot Study

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1151-1151
Author(s):  
Marina Brown ◽  
Ginger Reeser ◽  
Leila Shinn ◽  
Matthew Browning ◽  
Andiara Schwingel ◽  
...  

Abstract Objectives Urbanization has reduced environmental microorganism exposure, with most Americans spending over 90% of their time indoors. However, gardening remains a viable means of exposure to soil microorganisms and harvesting of edible produce. Accordingly, we aimed to determine relations between gardening, dietary habits, and gut microbiota. Methods Gardening families (N = 10) and non-gardening (control) families (N = 9) were enrolled in a longitudinal pilot trial. Families included two adults and a child (5–18 years) for a total sample size of 54 participants. Fecal samples were collected prior to and at the end of the gardening season. Garden soil samples (n = 9) were collected prior to and at the end of the season. Diet history questionnaires were collected at the beginning and end of the study to measure Healthy Eating Index (HEI) scores. Fecal and soil DNA were extracted, sequenced (V4 region of 16S rDNA gene), and analyzed using DADA2 and QIIME2. Alpha diversity measures were assessed, including Faith's phylogenetic diversity (PD) and observed operational taxonomic units (OTUs). Results Gardening families had significantly more fecal OTUs compared to control families (172.3 ± 44.2 vs. 157.0 ± 44.2, respectively; P = 0.03). Gardening families had greater (P = 0.02) Faith's PD scores and tended (P = 0.08) to have more fecal OTUs than the control group at peak gardening season. In the gardening families, fecal OTUs and Faith's PD were numerically but not statistically greater at the end of the season compared to baseline (all p’s > 0.05). Prior to the gardening season, gardening adults had greater HEI scores compared to control families (57 ± 9.1 vs. 49 ± 8.8, P = 0.03). HEI scores were not different between groups at the end of the study. Conclusions This study revealed that the fecal microbiota of families that garden differs from non-gardening families, and there are detectable changes in the fecal microbial community of gardeners and their family members over the course of the gardening season. Further research is needed to understand the role of diet in these changes and if microbes within the soil move between the soil and gastrointestinal environments. Funding Sources This research was funded by the Christopher Family Foundation Food and Family Grant Program.

Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2112
Author(s):  
Talía Sainz ◽  
María José Gosalbes ◽  
Alba Talavera ◽  
Nuria Jimenez-Hernandez ◽  
Luis Prieto ◽  
...  

Aims: The gut microbiota exerts a critical influence in the immune system. The gut microbiota of human virus immunodeficiency (HIV)-infected children remains barely explored. We aimed to characterize the fecal microbiota in vertically HIV-infected children and to explore the effects of its modulation with a symbiotic nutritional intervention. Methods: a pilot, double blind, randomized placebo-controlled study including HIV-infected children who were randomized to receive a nutritional supplementation including prebiotics and probiotics or placebo for four weeks. HIV-uninfected siblings were recruited as controls. The V3–V4 region of the 16S rRNA gene was sequenced in fecal samples. Results: 22 HIV-infected children on antiretroviral therapy (ART) and with viral load (VL) <50/mL completed the follow-up period. Mean age was 11.4 ± 3.4 years, eight (32%) were male. Their microbiota showed reduced alpha diversity compared to controls and distinct beta diversity at the genus level (Adonis p = 0.042). Patients showed decreased abundance of commensals Faecalibacterium and an increase in Prevotella, Akkermansia and Escherichia. The nutritional intervention shaped the microbiota towards the control group, without a clear directionality. Conclusions: Vertical HIV infection is characterized by changes in gut microbiota structure, distinct at the compositional level from the findings reported in adults. A short nutritional intervention attenuated bacterial dysbiosis, without clear changes at the community level. Summary: In a group of 24 vertically HIV-infected children, in comparison to 11 uninfected controls, intestinal dysbiosis was observed despite effective ART. Although not fully effective to restore the microbiota, a short intervention with pre/probiotics attenuated bacterial dysbiosis.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P &lt; 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P &lt; 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1938
Author(s):  
Han Aricha ◽  
Huasai Simujide ◽  
Chunjie Wang ◽  
Jian Zhang ◽  
Wenting Lv ◽  
...  

Mongolian cattle from China have strong adaptability and disease resistance. We aimed to compare the gut microbiota community structure and diversity in grazing Mongolian cattle from different regions in Inner Mongolia and to elucidate the influence of geographical factors on the intestinal microbial community structure. We used high throughput 16S rRNA sequencing to analyze the fecal microbial community and diversity in samples from 60 grazing Mongolian cattle from Hulunbuir Grassland, Xilingol Grassland, and Alxa Desert. A total of 2,720,545 high-quality reads and sequences that were 1,117,505,301 bp long were obtained. Alpha diversity among the three groups showed that the gut microbial diversity in Mongolian cattle in the grasslands was significantly higher than that in the desert. The dominant phyla were Firmicutes and Bacteroidetes, whereas Verrucomicrobia presented the highest abundance in the gut of cattle in the Alxa Desert. The gut bacterial communities in cattle from the grasslands versus the Alxa Desert were distinctive, and those from the grasslands were closely clustered. Community composition analysis revealed significant differences in species diversity and richness. Overall, the composition of the gut microbiota in Mongolian cattle is affected by geographical factors. Gut microbiota may play important roles in the geographical adaptations of Mongolian cattle.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Shen ◽  
Xiao Yang ◽  
Gaofei Li ◽  
Jiayu Gao ◽  
Ying Liang

AbstractThe alterations in the gut microbiota have been reported to be correlated with the development of depression. The purpose of this study was to investigate the changes of intestinal microbiota in depressed patients after antidepressant treatment. We recruited 30 MDD patients (MDD group) and 30 healthy controls (control group). The MDD group received individualized treatment with escitalopram at a maximum dose of 20 mg/day. After depressive symptoms improved to a HAMD scale score > 50%, a fecal sample was collected again and used as the follow-up group. The differences of gut microbiota between patients and controls, the characteristics of gut microbiota under treatment and the potential differences in metabolic functions were thus investigated. The Firmicutes/Bacteroidetes ratio was significantly different within three groups, and the ratio of follow-up group was significantly lower than those of the other two groups. Alpha diversity was significantly higher in MDD group than those of the other groups, and the alpha diversity was not significantly different between control and follow-up groups. The beta diversity of some patients resembled participants in the control group. The metabolic function of gut microbiota after treatment was still different from that of the control group. This study suggests that the intestinal flora of depressed patients has a tendency to return to normal under escitalopram treatment.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Nora S. Wolff ◽  
Max C. Jacobs ◽  
W. Joost Wiersinga ◽  
Floor Hugenholtz

Abstract Background The gut microbiome plays a protective role in the host defense against pneumonia. The composition of the lung microbiota has been shown to be predictive of clinical outcome in critically ill patients. However, the dynamics of the lung and gut microbiota composition over time during severe pneumonia remains ill defined. We used a mouse model of pneumonia-derived sepsis caused by Klebsiella pneumoniae in order to follow the pathogen burden as well as the composition of the lung, tongue and fecal microbiota from local infection towards systemic spread. Results Already at 6 h post-inoculation with K. pneumoniae, marked changes in the lung microbiota were seen. The alpha diversity of the lung microbiota did not change throughout the infection, whereas the beta diversity did. A shift between the prominent lung microbiota members of Streptococcus and Klebsiella was seen from 12 h onwards and was most pronounced at 18 h post-inoculation (PI) which was also reflected in the release of pro-inflammatory cytokines indicating severe pulmonary inflammation. Around 18 h PI, K. pneumoniae bacteremia was observed together with a systemic inflammatory response. The composition of the tongue microbiota was not affected during infection, even at 18–30 h PI when K. pneumoniae had become the dominant bacterium in the lung. Moreover, we observed differences in the gut microbiota during pulmonary infection. The gut microbiota contributed to the lung microbiota at 12 h PI, however, this decreased at a later stage of the infection. Conclusions At 18 h PI, K. pneumoniae was the dominant member in the lung microbiota. The lung microbiota profiles were significantly explained by the lung K. pneumoniae bacterial counts and Klebsiella and Streptococcus were correlating with the measured cytokine levels in the lung and/or blood. The oral microbiota in mice, however, was not influenced by the severity of murine pneumonia, whereas the gut microbiota was affected. This study is of significance for future studies investigating the role of the lung microbiota during pneumonia and sepsis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1533-1533
Author(s):  
Wendy Cozen ◽  
Guoqin Yu ◽  
Mitchell Gail ◽  
Bharat N. Nathwani ◽  
Amie E. Hwang ◽  
...  

Abstract Abstract 1533 Survivors of adolescent/young adult Hodgkin lymphoma (AYAHL) report fewer exposures to infections during childhood compared to controls. They also have persistent genomic and functional aberrations in their lymphocytes that are partially attributable to chemotherapy or radiotherapy. Recent studies have shown that the gut microbiome can affect both the innate and adaptive immune response, and can suppress or exacerbate an inflammatory response. Given the central role of the gut microbiota in immune function, we investigated whether AYAHL survivors, who were members of 13 mono- and dizygotic twin pairs discordant for this disease, have differences in the diversity or phylogenetic configurations of their fecal microbiota compared to their unaffected co-twins. Twin pairs discordant for AYAHL are an ideal study population because they are at least partially matched on genetic and early life factors, both of which influence the composition of the gut microbiome. Pyrosequencing of bacterial 16S rRNA amplicons generated from single fecal samples obtained from each individual yielded 253,182 filtered and de-noised reads translated into species-level operational taxonomic units (OTUs). Standardized across individuals by random sampling, reads were assigned to 2513 OTUs to compare microbiome diversity and relative abundance of taxa. The number of OTU's was compared between twins using a paired student's t-test and a one-way analysis of variance was performed to determine whether such measures differed across twin pairs by comparing the measures between twins to those of randomly paired individuals. AYAHL survivors had less diverse fecal microbial communities compared to their unaffected co-twin controls by all measures of alpha diversity (Table 1). Measures that weighted the relative abundance of the bacteria were not statistically significantly different (Shannon Index, p= 0.270; Chao index, p= 0.066, PD Whole Tree Index, p= 0.051). However, when the unweighted number of unique OTUs was considered, the difference was significant (338 in cases vs. 369 in unaffected co-twin controls, p= 0.015). When the analysis was restricted to OTUs that were present at an abundance of > 0.1% in at least 2 of the 23 samples analyzed, the differences were attenuated, with only the PD Whole Tree index difference in diversity remaining marginally significant (p= 0.045). Only one bacterial taxon was associated with AYAHL, probably due to chance. Phylogenetic measurements indicated that the bacterial component of the microbiota of co-twins were more similar with respect to one another than unrelated individuals, although no differences by zygosity were observed. These results provide evidence that AYAHL survivors have reduced diversity of the gut microbiota, perhaps as a consequence the disease, its treatment, or a particularly hygienic environment. Table 1. Comparisons of alpha diversity measurements between Hodgkin lymphoma cases and co-twin controls. Measurements of Alpha Diversity Mean (Cases) Mean (Unaffected Co-twins) Mean Difference (Unaffected co-twin-case difference) P-value1 Initial analysis No. unique OTUs 338 369 31 0.015 Shannon index 5.6 5.8 0.2 0.27 Chao1 533 574 41 0.066 PD_whole tree 21.2 22.8 1.6 0.051 Conservative analysis No. unique OTUs 183 196 13 0.10 Shannon index 5.2 5.4 0.2 0.40 Chao1 230 237 7 0.47 PD_whole tree 13.7 14.6 0.9 0.045 1 P-value by paired t-tests. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ayako Horigome ◽  
Ken Hisata ◽  
Toshitaka Odamaki ◽  
Noriyuki Iwabuchi ◽  
Jin-zhong Xiao ◽  
...  

The colonization and persistence of probiotics introduced into the adult human gut appears to be limited. It is uncertain, however, whether probiotics can successfully colonize the intestinal tracts of full-term and premature infants. In this study, we investigated the colonization and the effect of oral supplementation with Bifidobacterium breve M-16V on the gut microbiota of low birth weight (LBW) infants. A total of 22 LBW infants (12 infants in the M-16V group and 10 infants in the control group) were enrolled. B. breve M-16V was administrated to LBW infants in the M-16V group from birth until hospital discharge. Fecal samples were collected from each subject at weeks (3.7–9.3 weeks in the M-16V group and 2.1–6.1 weeks in the control group) after discharge. qPCR analysis showed that the administrated strain was detected in 83.3% of fecal samples in the M-16V group (at log10 8.33 ± 0.99 cell numbers per gram of wet feces), suggesting that this strain colonized most of the infants beyond several weeks post-administration. Fecal microbiota analysis by 16S rRNA gene sequencing showed that the abundance of Actinobacteria was significantly higher (P &lt; 0.01), whereas that of Proteobacteria was significantly lower (P &lt; 0.001) in the M-16V group as compared with the control group. Notably, the levels of the administrated strain and indigenous Bifidobacterium bacteria were both significantly higher in the M-16V group than in the control group. Our findings suggest that oral administration of B. breve M-16V led to engraftment for at least several weeks post-administration and we observed a potential overall improvement in microbiota formation in the LBW infants’ guts.


2020 ◽  
Author(s):  
Dandan Jiang ◽  
Xin He ◽  
Marc Valitutto ◽  
Li Chen ◽  
Qin Xu ◽  
...  

Abstract Background:The Chinese monal (Lophophorus lhuysii) is an endangered bird species, with a wild population restricted to the mountains of southwest China, and only one known captive population in the world. We investigated the fecal microbiota and metabolome of wild and captive Chinese monals to explore differences and similarities in nutritional status and digestive characteristics. An integrated approach combining 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high performance liquid chromatography (UHPLC) based metabolomics were used to examine the fecal microbiota composition and the metabolomic profile of Chinese monals. Results: The results showed that the alpha diversity of gut microbes in the wild group were significantly higher than that in the captive group and the core bacterial taxa in the two groups showed remarkable differences at phylum, class, order, and family levels. Metabolomic profiling also revealed differences, mainly related to galactose, starch and sucrose metabolism, fatty acid, bile acid biosynthesis and bile secretion. Furthermore, strong correlations of metabolite types and bacterial genus were detected. Conclusions: There were remarkable differences in the gut microbiota composition and metabolomic profile between wild and captive Chinese monals. This study has established a baseline for a normal gut microbiota and metabolomic profile for wild Chinese monals, thus allowing us to evaluate if differences seen in captive organisms have an impact on their overall health and reproduction.


2020 ◽  
Vol 15 (11) ◽  
pp. 1934578X2097251
Author(s):  
Guiming Yan ◽  
Yuanqing Si ◽  
Jing Shao ◽  
Tianming Wang ◽  
Changzhong Wang ◽  
...  

Houttuynia drugs, including sodium houttuyfonate (SH) and sodium new houttuyfonate (SNH), are derivatives of the active ingredient of Houttuynia cordata, which can be used as both a vegetable and medicine in China. We aimed to explore the regulation effects of SH and SNH on the gut microbiota and production of inflammatory factors in mice. Here, we found that SH and SNH led to an increase in the production of interferon gamma and nuclear factor κ, and decreased the production of lipocalin-2 in the mice. The alpha diversity results of gut microbiota of the mice showed that the gut microbiota of the SH, SNH, and azithromycin treatment groups were significantly different from the control group, but the effects of reduced abundance and diversity of the SH and SNH groups were relatively lower than that of the azithromycin group. The beta diversity results indicated that the samples of each group were significantly grouped, and distribution of SH and SNH groups was more similar to the control group than the azithromycin group. Furthermore, SH and SNH groups had significant differences in the abundance of specific bacteria such as Escherichia–Shigella and Odoribacter, which might be associated with the increase of inflammatory factors. Therefore, our results suggested that SH and SNH may significantly affect the gut microbiota and production of inflammatory factors in the mice.


Sign in / Sign up

Export Citation Format

Share Document