scholarly journals Die Attach Assembly Process Tool Advancement

Author(s):  
Frederick Ray Gomez ◽  
Rennier Rodriguez ◽  
Nerie Gomez

Die attach film (DAF) voids detection is one of the challenges during the introduction of non-conductive adhesives for integrated circuit products affecting production control robustness and detection. In this paper, a specialized tool capable to distinguish and quantify the amount of DAF voids is presented wherein the implementation of semi-auto grid lines generates more precise measurement and correct defect call-out. The tool is proposed as an alternative option for x-ray inspection that is found to be incapable in proper detection and accurate measurement of gaps and un-occupied area within the adhesive thickness that produces over estimation of production rejects.

Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 730
Author(s):  
Erik Sarnello ◽  
Tao Li

Enzyme immobilization techniques are widely researched due to their wide range of applications. Polymer–protein core–shell nanoparticles (CSNPs) have emerged as a promising technique for enzyme/protein immobilization via a self-assembly process. Based on the desired application, different sizes and distribution of the polymer–protein CSNPs may be required. This work systematically studies the assembly process of poly(4-vinyl pyridine) and bovine serum albumin CSNPs. Average particle size was controlled by varying the concentrations of each reagent. Particle size and size distributions were monitored by dynamic light scattering, ultra-small-angle X-ray scattering, small-angle X-ray scattering and transmission electron microscopy. Results showed a wide range of CSNPs could be assembled ranging from an average radius as small as 52.3 nm, to particles above 1 µm by adjusting reagent concentrations. In situ X-ray scattering techniques monitored particle assembly as a function of time showing the initial particle growth followed by a decrease in particle size as they reach equilibrium. The results outline a general strategy that can be applied to other CSNP systems to better control particle size and distribution for various applications.


2020 ◽  
Vol 493 (1) ◽  
pp. L81-L86 ◽  
Author(s):  
P Atri ◽  
J C A Miller-Jones ◽  
A Bahramian ◽  
R M Plotkin ◽  
A T Deller ◽  
...  

ABSTRACT Using the Very Long Baseline Array and the European Very Long Baseline Interferometry Network, we have made a precise measurement of the radio parallax of the black hole X-ray binary MAXI J1820+070, providing a model-independent distance to the source. Our parallax measurement of (0.348 ± 0.033) mas for MAXI J1820+070 translates to a distance of (2.96 ± 0.33) kpc. This distance implies that the source reached (15 ± 3) per cent of the Eddington luminosity at the peak of its outburst. Further, we use this distance to refine previous estimates of the jet inclination angle, jet velocity, and the mass of the black hole in MAXI J1820+070 to be (63 ± 3)°, (0.89 ± 0.09) c, and (9.2 ± 1.3) M⊙, respectively.


2018 ◽  
Vol 6 (5) ◽  
Author(s):  
Frederick Ray Gomez

The technical paper discusses the reduction of high leakage current failures of semiconductor IC (integrated circuit) packages by eliminating the ESD (electrostatic discharge) events during assembly process and ensuring the appropriate machine grounding and ESD controls.  It is imperative to reduce or ideally eliminate the leakage current failures of the device to ensure the product quality, especially as the market becomes more challenging and demanding.  After implementation of the corrective and improvement actions, high leakage current occurrence was reduced from baseline of 5784 ppm to 1567 ppm, better than the six sigma goal of 4715 ppm.


2021 ◽  
Vol 37 (5) ◽  
pp. 1117-1124
Author(s):  
R. M. Nikam ◽  
A. P. Patil ◽  
K. H. Kapadnis ◽  
A. D. Ahirrao ◽  
R.Y. Borse

There are numerous methods has been investigated and developed for the preparation of thin and thick films. Thick film technology is utilized for the production of electronic devices like surface mount devices, in the preparation of hybrid integrated circuit, in the formulation of heating elements, in the construction of integrated passive devices and sensors. Pure tin oxide (SnO2) and composite 1%, 3%, 5%, 7% and 9 % zirconium oxide (ZrO2) thick films of dimensions 2 cm×1 cm incorporated into pure tin oxide (SnO2) were prepared with standard screen printing method. All samples were fabricated on glass support. The thick films were subjected to drying and firing at 5000C at 5 hours in muffle furnace. Thick films of tin oxide (SnO2) and composite 1%, 3%, 5%, 7% and 9 % zirconium oxide (ZrO2) incorporated into pure tin oxide (SnO2) were checked for Scanning Electron Microscopy (S.E.M), Energy Dispersive X-ray Spectroscopy (E.D.A.X), X-ray diffraction (X.R.D), Fourier Transform infra-Red (F.T.I.R) and Ultra-Violet-Visible spectroscopy (U.V) for surface morphology, elemental analysis, crystalline phases of films, vibrational and spectrophotometric study respectively. In this research paper the spectrophotometric parameters such as absorbance and absorption coefficient with pure and compositional thick films were a part of investigation and surveillance.


2022 ◽  
Vol 17 (01) ◽  
pp. C01036
Author(s):  
P. Grybos ◽  
R. Kleczek ◽  
P. Kmon ◽  
A. Krzyzanowska ◽  
P. Otfinowski ◽  
...  

Abstract This paper presents a readout integrated circuit (IC) of pixel architecture called MPIX (Multithreshold PIXels), designed for CdTe pixel detectors used in X-ray imaging applications. The MPIX IC area is 9.6 mm × 20.3 mm and it is designed in a CMOS 130 nm process. The IC core is a matrix of 96 × 192 square-shaped pixels of 100 µm pitch. Each pixel contains a fast analog front-end followed by four independently working discriminators and four 12-bit ripple counters. Such pixel architecture allows photon processing one by one and selecting the X-ray photons according to their energy (X-ray colour imaging). To fit the different range of applications the MPIX IC has 8 possible different gain settings, and it can process the X-ray photons of energy up to 154 keV. The MPIX chip is bump-bonded to the CdTe 1.5 mm thick pixel sensor with a pixel pitch of 100 µm. To deal with the charge sharing effect coming from a thick semiconductor pixel sensor, multithreshold pattern recognition algorithm is implemented in the readout IC. The implemented algorithm operates both in the analog domain (to recover the total charge spread between neighboring pixels, when a single X-ray photon hits the border of the pixel) and in the digital domain (to allocate a hit position to a single pixel).


2012 ◽  
Vol 2012 (1) ◽  
pp. 001169-001177 ◽  
Author(s):  
Tobias Königer

Die attach materials for most MEMS packages must be highly flexible as temperature changes during the assembly process and application may lead to thermo-mechanical stress as a consequence of dissimilar coefficients of thermal expansion of substrate, chip and adhesive. Thermo-mechanical stress results in a distortion of the signal characteristics of the extremely stress-sensitive MEMS device. Within the scope of this paper, highly flexible heat-curing adhesives with a Young's modulus down to 5 MPa (0.725 ksi) at room temperature were developed. DMTA measurements show that temperature storage at +120 °C (+248 °F) does not cause the adhesive to embrittle, which would have a negative effect on the MEMS package's reliability. After storage at +120 °C (+248 °F) for up to 1000 h, no increase in Young's modulus can be observed. The adhesives cure at extremely low temperatures down to +100 °C (+212 °F), which reduces stress development during the assembly process. In addition, the adhesives have very process-friendly properties. Processing times of more than one week can be achieved. The option of dual curing enables preliminary light fixation of the chip within just seconds.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000152-000157
Author(s):  
Susie Johansson ◽  
John Dzarnoski

Miniaturization of everyday products has been driving sales for some time and continues to fuel the consumer market. Everyone expects size reduction with each new product generation [1], [2]. Almost everything has electronics inside that must get smaller. There is no market demanding smaller devices that are faster, more capable, more feature-rich than that of the hearing aid industry. While radios, Bluetooth wireless systems and other accessories are added to hearing instruments feature lists, the consumer nonetheless continues to wish for them to be even smaller. Advancements in circuit fabrication, component shrinkage and die consolidation have aided the industry in satisfying this need. However, as this demand continues and even intensifies, current surface mount device assembly materials are becoming inadequate and the limiting factor for overall circuit size reduction; specifically, the die attachment, protection and reinforcement process is limiting how small hearing aid circuits can be. For hearing aids, the addition of more features and connection to more accessories each require a number of integrated circuits and associated passives attached to a flexible circuit. These circuits are invariably bent and twisted during assembly, up to 180°, requiring the integrated circuit solder joints to be reinforced by underfilling to prevent detachment. Unfortunately, the underfilling process is time-consuming and the capillary action necessary for its success is finicky. Even more unfavorably, a designated “keep out” area for other components must surround the die to be underfilled to allow for the dispensing equipment to access the die, reducing the useable board space and limiting the overall possibility of circuit size reduction. Additionally, the underfill material must stay away from circuit board edges and areas to be bent during final assembly. In an attempt to increase useable circuit board space, decrease overall circuit board size, and reduce assembly steps, the application of two epoxy flux materials for die attach fluxing and underfilling of hearing aids was evaluated. Epoxy flux is a relatively new material, which combines the functionality of flux and underfill into a single step. Epoxy flux's application, while eliminating steps, would more significantly eliminate the necessary “keep out” areas around die and allow for more densely placed surface mount components. The epoxy flux materials were applied by both printing and dipping, and then evaluated using x-ray imaging, scanning acoustic microscope imaging, die peel testing, multiple reflow integrity testing and die shear testing.


Sign in / Sign up

Export Citation Format

Share Document