Controlled Release of Bi-Layered Malvidin Tablets Using 3D Printing Techniques

Author(s):  
Tejinder Kaur ◽  
Suruchi Singh

Malvidin belongs to the class of anthocyanidin, a pigment compound present in fruits and vegetables like the colored berries, flowers, and vegetables which have pigments on it and it is available commercially as malvidin chloride. Malvidin is known to possess many medicinal characteristics like anti-microbial, anti-diabetic, anti-inflammatory, anti-obesity, and anti-cancer. In this research paper, a 3D printing technique is used which evolves a 3D printer based on desktop that extrudes tablets comprising the active drug which here is malvidin our main ingredient and the other excipients which are used as binders and disintegrants. Methods which are adapted here for the formulation of 3D printed tablet make the tablets appropriate for immediate and sustained release with its definite physical and mechanical properties like hardness, friability, and weight. Tablets that are extruded by the 3D printer are controlled release bi-layer tablets. Due to involvement of 3D printer, printing cost for the bi-layered tablets found very low that makes our method as cost efficient.

Author(s):  
Satish Kumar Sharma ◽  
Pankaj Bhatt

Epigallo-catechin Gallate (or EGCG) is a polyphenol which is withdrawn from green tea and is commercially available as Epigallocatechin gallate. Epigallo-catechin gallate is known to have been used as dye and food colorants, but it also has many medicinal properties like anti-inflammatory, anti-microbial, anti-diabetic, anti-obesity, and anti-cancer. Keeping these medical properties in mind, in the present research paper, a 3D printing technique evolving a desktop based 3D printer to extrude tablets along with the active drug ingredient and other excipients that are used as binders and disintegrants. The method adapted in the formulation of a3D printed tablet in this research makes the tablet suitable for immediate and sustained release and does not affects it’s certain physical and mechanical properties such as hardness, friability, and weight variation. The tablets which are extruded from the 3D printer are the bi-layer tablets with controlled release. With the involvement of the 3D printer, the cost of printing the bi-layered tablets have found to be very low which makes the method cost efficient. The output bi-layer tablet has been developed using various analysis and specified standard apparatus and method so that the set standards of the tablet does not get affected. The immediate release and the sustained release methods were studied separately. The final stage of the research completes when the 3D printed tablets with set time intervals for the initial and sustained release and without changing the set mechanical properties of the tablet are obtained.


Author(s):  
Tejinder Kaur ◽  
Satish Kumar Sharma

Delphinidin is a known dye and food colorant along with many medicinal properties for instance anti-inflammatory, anti-microbial, anti-diabetic, anti-obesity and anti-cancer. The present research has been designed to formulate bi-layered tablets using delphinidin which inherits these medicinal properties. The extrusion of tablets is done by using 3D printing techniques involving a table-top 3D printer which extrudes delphinidin tablets along with the required excipients. The characteristics of the whole tablets have been analyzed separately including hardness, friability, and weight. Adapted method for tablet formulation results in tablets which are appropriate for the immediate release and sustained release. The present research provides a method to make the effective tablets with reduced cost which can be used as drug formulation method in pharmaceutical industries.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3543
Author(s):  
Wei Zhou ◽  
Jiawei Fang ◽  
Shuwei Tang ◽  
Zhengguo Wu ◽  
Xiaoying Wang

Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning–antibacterial dual-function packaging aerogel with a shell–core structure (CNGA/C–AgNPs) was obtained. The CNGA/C–AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C–AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C–AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ramesh Chand ◽  
Vishal S. Sharma ◽  
Rajeev Trehan ◽  
Munish Kumar Gupta

Purpose A nut bolt joint is a primary device that connects mechanical components. The vibrations cause bolted joints to self-loosen. Created by motors and engines, leading to machine failure, and there may be severe safety issues. All the safety issues and self-loosen are directly and indirectly the functions of the accuracy and precision of the fabricated nut and bolt. Recent advancements in three-dimensional (3D) printing technologies now allow for the production of intricate components. These may be used technologies such as 3D printed bolts to create fasteners. This paper aims to investigate dimensional precision, surface properties, mechanical properties and scanning electron microscope (SEM) of the component fabricated using a multi-jet 3D printer. Design/methodology/approach Multi-jet-based 3D printed nut-bolt is evaluated in this paper. More specifically, liquid polymer-based nut-bolt is fabricated in sections 1, 2 and 3 of the base plate. Five nuts and bolts are fabricated in these three sections. Findings Dimensional inquiry (bolt dimension, general dimensions’ density and surface roughness) and mechanical testing (shear strength of nut and bolt) were carried out throughout the study. According to the ISO 2768 requirements for the General Tolerances Grade, the nut and bolt’s dimensional examination (variation in bolt dimension, general dimensions) is within the tolerance grades. As a result, the multi-jet 3D printing (MJP)-based 3D printer described above may be used for commercial production. In terms of mechanical qualities, when the component placement moves from Sections 1 to 3, the density of the manufactured part decreases by 0.292% (percent) and the shear strength of the nut and bolt decreases by 30%. According to the SEM examination, the density of the River markings, sharp edges, holes and sharp edges increased from Sections 1 to 3, which supports the findings mentioned above. Originality/value Hence, this work enlightens the aspects causing time lag during the 3D printing in MJP. It causes variation in the dimensional deviation, surface properties and mechanical properties of the fabricated part, which needs to be explored.


2021 ◽  
Vol 1023 ◽  
pp. 75-81
Author(s):  
Aappo Mustakangas ◽  
Atef Hamada ◽  
Antti Järvenpää

Cost-efficient 3D-printing can create a lot of new opportunities in engineering as it enables rapid prototyping of models and functional parts. In the present study, Polylactic acid (PLA) cubic specimens with different types of infill patterns (IPs), rectilinear, grid and cuboid, were additively manufactured by Fused Filament Fabrication 3D-printing. The PLA cubes are fabricated with one perimeter and different IPs density (10, 20, and 30%). Subsequently, the compressive strengths of the PLA materials were measured in two loading directions, i.e., the layers building direction is parallel (PD) to the loading axis and perpendicular (ND) to the loading direction. An optical microscope was used to examine the deformed IPs in both loading directions. The compressive flow stress curves of the PLA cubes infilled with rectilinear and grid patterns exhibited strong fluctuations with lower compressive strengths in the loading direction along ND. The PLA with 30% grid IP revealed a superior strength of ~12 kN in the loading direction along PD. On the contrary, the same material exhibited a worst compressive strength 3 kN along ND.


History of additive manufacturing started in the 1980s in Japan. Stereolithography was invented first in 1983. After that tens of other techniques were invented under the common name 3D printing. When stereolithography was invented rapid prototyping did not exists. Tree years later new technique was invented: selective laser sintering (SLS). First commercial SLS was in 1990. At the end of 20t century, first bio-printer was developed. Using bio materials, first kidney was 3D printed. Ten years later, first 3D Printer in the kit was launched to the market. Today we have large scale printers that printed large 3D objects such are cars. 3D printing will be used for printing everything everywhere. List of pros and cons questions rising every day.


2017 ◽  
Vol 84 (9) ◽  
Author(s):  
Benedikt Hampel ◽  
Samuel Monshausen ◽  
Meinhard Schilling

AbstractIn consequence of the growing diversity of materials in the fused deposition modeling 3D printing technique, electrically conductive materials are commercially available. In this work two filaments based on thermoplastics filled with carbon or metal nanoparticles are analyzed in terms of their electrical conductance. The printing parameters to process the materials with the 3D printer are optimized with the design of experiments (DoE) method. A model to calculate the resistance of such 3D printed structures is presented and a demonstrator as a proof of concept was 3D printed based on these results. In addition, 3D printing of capacitors is investigated.


2020 ◽  
Author(s):  
Michael Yue-Cheng Chen ◽  
Jacob Skewes ◽  
Ryan Daley ◽  
Maria Ann Woodruff ◽  
Nicholas John Rukin

Abstract BackgroundThree-dimensional (3D) printing is a promising technology but the limitations are often poorly understood. We compare different 3D printingmethods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market. MethodsA prototype dilator was 3D printed vertically orientated on a low cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on a SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped. ResultsThe horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators respectively (503g vs 283g vs 163g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000. ConclusionsAt the current time 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise beachieved.


Author(s):  
Yuchen Mao ◽  
Takuya Miyazaki ◽  
Kohei Sakai ◽  
Jin Gong ◽  
Meifang Zhu ◽  
...  

Most of the phase change materials (PCMs) have been limited to use as functional additions or sealed in containers, and extra auxiliary equipment or supporting matrix is needed. The emergence of 3D printing technique has dramatically advanced the developments of materials and simplified production processes. This study focuses on a novel strategy to model thermal energy storage crystalline gels with three-dimensional architecture directly from liquid resin without supporting materials through light-induced polymerization 3D printing technique. A mask-projection stereolithography printer was used to measure the 3D printing test, and the printable characters of crystalline thermal energy storage P(SA-DMAA) gels with different molar ratios were evaluated. For the P(SA-DMMA) gels with small fraction of SA, the 3D fabrication was realized with higher printing precision both on mili- and micro-meter scales. As a comparison of 3D printed samples, P(SA-DMAA) gels made by other two methods, post-UV curing treatment after 3D printing and UV curing using conventional mold, were prepared. The 3D printed P(SA-DMAA) gels shown high crystallinity. Post&ndash;UV curing treatment was beneficial to full curing of 3D printed gels, but did not lead to the further improvement of crystal structure to get higher crystallinity. The P(SA-DMAA) crystalline gel having the highest energy storage enthalpy that reached 69.6 J&middot;g&minus;1 was developed. Its good thermoregulation property in the temperature range from 25 to 40 &deg;C was proved. The P(SA-DMAA) gels are feasible for practical applications as one kind of 3D printing material with thermal energy storage and thermoregulation functionality.


2021 ◽  
Vol 11 (18) ◽  
pp. 8545
Author(s):  
So-Ree Hwang ◽  
Min-Soo Park

Additive manufacturing, commonly called 3D printing, has been studied extensively because it can be used to fabricate complex structures; however, polymer-based 3D printing has limitations in terms of implementing certain functionalities, so it is limited in the production of conceptual prototypes. As such, polymer-based composites and multi-material 3D printing are being studied as alternatives. In this study, a DLP 3D printer capable of printing multiple composite materials was fabricated using a movable separator and structures with various properties were fabricated by selectively printing two composite materials. After the specimen was fabricated based on the ASTM, the basic mechanical properties of the structure were compared through a 3-point bending test and a ball rebound test. Through this, it was shown that structures with various mechanical properties can be fabricated using the proposed movable-separator-based DLP process. In addition, it was shown that this process can be used to fabricate anisotropic structures, whose properties vary depending on the direction of the force applied to the structure. By fabricating multi-joint grippers with varying levels of flexibility, it was shown that the proposed process can be applied in the fabrication of soft robots as well.


Sign in / Sign up

Export Citation Format

Share Document