scholarly journals Future Projections of heat and cold stress based on two RCP Scenarios over Greece

2021 ◽  
Author(s):  
Nadia Politi ◽  
Diamando Vlachogiannis ◽  
Athanasios Sfetsos ◽  
Iason Markantonis

<p>Climate change will exert a considerable influence across the area of Greece with temperature and precipitation extreme events becoming more frequent creating significant impacts on many societal and economic sectors. Future projections based on a range of anthropogenic scenarios show that decreases of annual rainfall amounts associated with increases of heat-waves and droughts are anticipated in several regions of Greece. Τhe Weather Research and Forecasting (WRF) model has appropriately been set-up and parameterized with a high spatial resolution of 5 km for the area of Greece. Previous research has revealed the capability of the configured WRF high resolution model to reproduce the main climatological variables in this region, which is dominated by highly variable topographic characteristics. The scope of this study is to investigate climate change projections for indices that express human‐perceived temperature extremes such as the Humidity index (Humidex), Wind Chill index (WCI) and Heat stress index (HI) in order to evaluate the potential impact on human health. These indices use different meteorological variables or a combination of them such as temperature, relative humidity and wind speed. The computation of these indices is based on daily simulated data, under two different scenarios (RCP4.5 and RCP 8.5) and periods (2025-2049 and 2075-2099) compared to present climate conditions (1980-2004). Downscaled results are derived from the global EC-EARTH model dataset, used for initial and boundary conditions. Our findings contribute to the quantification of future changes as well as on the identification of potential areas that might become prone to different degrees of heat/cold stress over the area of Greece.</p>

Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 34 ◽  
Author(s):  
Ali Raza ◽  
Ali Razzaq ◽  
Sundas Mehmood ◽  
Xiling Zou ◽  
Xuekun Zhang ◽  
...  

Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.


Author(s):  
Nanda Kaji Budhathoki ◽  
Kerstin K. Zander

Farmers worldwide have to deal with increasing climate variability and weather extremes. Most of the previous research has focused on impacts on agricultural production, but little is known about the related social and economic impacts on farmers. In this study, we investigated the social and economic impact of extreme weather events (EWE) on farmers in Nepal, and explored how they coped with and adapted to heat waves and cold spells between 2012 and 2017. To address these aims, we conducted a survey of 350 farms randomly selected from the Bardiya and Banke districts of the Terai lowlands of Nepal. They were specifically asked to rate the impacts of extreme temperatures, as well as their effect on labour productivity and collective farmer health, and the detailed preventative measures they had implemented. About 84% of the farmers self-reported moderate or severe heat stress during the last five years, and about 85%, moderate or severe cold stress. Likewise, the majority of respondents reported that both farmer health and labour productivity had been compromised by EWEs. Productivity loss had a strong association with the perceived levels of heat and cold stress, which, in turn, were more likely to be reported by farmers with previous EWE experience. Potentially due to the increased care required during EWEs, those farmers with livestock reported increased heat and cold stress, as, surprisingly, did those who had implemented adaptation measures. Farmers seemed to be less prepared for potential threats of cold spells than heat waves, and therefore less likely to adopt coping strategies, since these are a recent phenomenon. This study identified some limitations. The cross sectional and self-reported data, as a common source of information to estimate health impact, level of heat/cold stress and labour productivity loss. Community-based education/community engagement programs could be developed to facilitate proactive adaptation.


Author(s):  
Petersson ◽  
Kuklane ◽  
Gao

More and more people will experience thermal stress in the future as the global temperature is increasing at an alarming rate and the risk for extreme weather events is growing. The increased exposure to extreme weather events poses a challenge for societies around the world. This literature review investigates the feasibility of making advanced human thermal models in connection with meteorological data publicly available for more versatile practices and a wider population. By providing society and individuals with personalized heat and cold stress warnings, coping advice and educational purposes, the risks of thermal stress can effectively be reduced. One interesting approach is to use weather station data as input for the wet bulb globe temperature heat stress index, human heat balance models, and wind chill index to assess heat and cold stress. This review explores the advantages and challenges of this approach for the ongoing EU project ClimApp where more advanced models may provide society with warnings on an individual basis for different thermal environments such as tropical heat or polar cold. The biggest challenges identified are properly assessing mean radiant temperature, microclimate weather data availability, integration and continuity of different thermal models, and further model validation for vulnerable groups.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 978 ◽  
Author(s):  
Marco D’Oria ◽  
Maria Tanda ◽  
Valeria Todaro

This study provides an up-to-date analysis of climate change over the Salento area (southeast Italy) using both historical data and multi-model projections of Regional Climate Models (RCMs). The accumulated anomalies of monthly precipitation and temperature records were analyzed and the trends in the climate variables were identified and quantified for two historical periods. The precipitation trends are in almost all cases not significant while the temperature shows statistically significant increasing tendencies especially in summer. A clear changing point around the 80s and at the end of the 90s was identified by the accumulated anomalies of the minimum and maximum temperature, respectively. The gradual increase of the temperature over the area is confirmed by the climate model projections, at short—(2016–2035), medium—(2046–2065) and long-term (2081–2100), provided by an ensemble of 13 RCMs, under two Representative Concentration Pathways (RCP4.5 and RCP8.5). All the models agree that the mean temperature will rise over this century, with the highest increases in the warm season. The total annual rainfall is not expected to significantly vary in the future although systematic changes are present in some months: a decrease in April and July and an increase in November. The daily temperature projections of the RCMs were used to identify potential variations in the characteristics of the heat waves; an increase of their frequency is expected over this century.


Author(s):  
Mai Van Khiem

Abstract: This article presents the results of constructing climate change scenarios for Ho Chi Minh City (HCMC)based on the climate change scenarios of Vietnam published in 2016 by the Ministry of Natural Resources and Environment. Four high- resolution regional climate models include CCAM, clWRF, PRECIS, RegCM were used to downscale results of global climate models. The results show that the annual average temperature in HCMC tends to increase in the future compared to the baseline period 1986-2005, the increase depends on each RCP scenario. By the end of the century, the annual average temperature in HCMC had an increase of about 1.7÷1.9°C under the RCP4.5 scenario and 3.2÷3.6°C under RCP8.5.Meanwhile, annual rainfall in HCMC tends to increase in most periods under both of RCP scenarios. By the end of the century, annual rainfall in HCMC increases from 15% to 25% in the RCP4.5 scenario and 20-25% in the RCP8.5 scenario. Annual rainfall in coastal areas increases more than inland areas. Keyword: Climate change scenarios, Ho Chi Minh city


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 340
Author(s):  
Amparo Primo-Capella ◽  
Mary-Rus Martínez-Cuenca ◽  
María Ángeles Forner-Giner

Due to climate change, we are forced to face new abiotic stress challenges like cold and heat waves that currently result from global warming. Losses due to frost and low temperatures force us to better understand the physiological, hormonal, and molecular mechanisms of response to such stress to face losses, especially in tropical and subtropical crops like citrus fruit, which are well adapted to certain weather conditions. Many of the responses to cold stress that are found are also conserved in citrus. Hence, this review also intends to show the latest work on citrus. In addition to basic research, there is a great need to employ and cultivate new citrus rootstocks to better adapt to environmental conditions.


Author(s):  
O. Shevchenko ◽  
S. Snizhko

The features of the manifestation of climate change in the cities of Ukraine are investigated. It has been established that over the past decades mean annual air temperature in big cities has increased on 0.7–1.2°С, compare to the normal climatic period (1961–1990). The most significant increase in the mean monthly air temperature in the modern period in Ukrainian cities was recorded in January and in the summer months. An increase in the recurrence of tropical nights (when the air temperature did not drop below 20.0°C) and heat waves (HW) was revealed. In all studied cities located in different regions of Ukraine (with the exception of Kharkiv and Kyiv), the number of HW cases in the modern period (1991–2015) has increased two or more times compared with 1961–1990. The most vulnerable in the modern period to the effects of HW are the cities of the southern regions of Ukraine. No HW cases were recorded in Odessa during the period 1961–1990, and 14 cases have been identified in the modern period; the frequency of HW in Zaporizhzhya and Kherson increased from 3 to 22 cases. A change was found in the distribution of precipitation over the seasons and the nature of their precipitation: with a decrease in the number of cases of precipitation, their intensity increases. Based on RCP-scenarios, projections of air temperature for the studied cities were made until the end of the 21st century. According to the calculations for all scenarios, the average annual air temperature will increase gradually in all regions and cities of Ukraine and will increase on average from 2.0–2.5°C in the low-end scenario (RCP 4.5) to 5.0–6.0°C in the high-end scenario (RCP 8.5). Thus, the results of the study indicate the need to analyze the vulnerability of Ukrainian cities to climate change and can be used both to carry out such assessment and to develop measures and plans for adaptation to climate change.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 665
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Supattra Visessri ◽  
Duangrudee Kositgittiwong

Due to a continuous increase in global temperature, the climate has been changing without sign of alleviation. An increase in the air temperature has caused changes in the hydrologic cycle, which have been followed by several emergencies of natural extreme events around the world. Thailand is one of the countries that has incurred a huge loss in assets and lives from the extreme flood and drought events, especially in the northern part. Therefore, the purpose of this study was to assess the hydrological regime in the Yom and Nan River basins, affected by climate change as well as the possibility of extreme floods and droughts. The hydrological processes of the study areas were generated via the physically-based hydrological model, namely the Soil and Water Assessment Tool (SWAT) model. The projected climate conditions were dependent on the outputs of the Global Climate Models (GCMs) as the Representative Concentration Pathways (RCPs) 2.6 and 8.5 between 2021 and 2095. Results show that the average air temperature, annual rainfall, and annual runoff will be significantly increased in the intermediate future (2046–2070) onwards, especially under RCP 8.5. According to the Flow Duration Curve and return period of peak discharge, there are fluctuating trends in the occurrence of extreme floods and drought events under RCP 2.6 from the future (2021–2045) to the far future (2071–2095). However, under RCP 8.5, the extreme flood and drought events seem to be more severe. The probability of extreme flood remains constant from the reference period to the near future, then rises dramatically in the intermediate and the far future. The intensity of extreme droughts will be increased in the near future and decreased in the intermediate future due to high annual rainfall, then tending to have an upward trend in the far future.


Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


Sign in / Sign up

Export Citation Format

Share Document