Expression of AP-2 transcription factor and of its downstream target genes c-kit, E-cadherin and p21 in human cutaneous melanoma

2001 ◽  
Vol 83 (3) ◽  
pp. 364-372 ◽  
Author(s):  
Alfonso Baldi ◽  
Daniele Santini ◽  
Tullio Battista ◽  
Emanuele Dragonetti ◽  
Giulio Ferranti ◽  
...  
2006 ◽  
Vol 26 (4) ◽  
pp. 1414-1423 ◽  
Author(s):  
Hong Duan ◽  
Hanh T. Nguyen

ABSTRACT Skeletal muscle formation in Drosophila melanogaster requires two types of myoblasts, muscle founders and fusion-competent myoblasts. Lame duck (Lmd), a member of the Gli superfamily of transcription factors, is essential for the specification and differentiation of fusion-competent myoblasts. We report herein that appropriate levels of active Lmd protein are attained by a combination of posttranscriptional mechanisms. We provide evidence that two different regions of the Lmd protein are critical for modulating the balance between its nuclear translocation and its retention within the cytoplasm. Activation of the Lmd protein is also tempered by posttranslational modifications of the protein that do not detectably change its subcellular localization. We further show that overexpression of Lmd protein derivatives that are constitutively nuclear or hyperactive results in severe muscle defects. These findings underscore the importance of regulated Lmd protein activity in maintaining proper activation of downstream target genes, such as Mef2, within fusion-competent myoblasts.


2021 ◽  
Vol 22 (13) ◽  
pp. 6996
Author(s):  
Jing Sun ◽  
Tian Chen ◽  
Mi Liu ◽  
Daqiu Zhao ◽  
Jun Tao

The plant transcription factor WRINKLED1 (WRI1), a member of AP2/EREBP, is involved in the regulation of glycolysis and the expression of genes related to the de novo synthesis of fatty acids in plastids. In this study, the key regulator of seed oil synthesis and accumulation transcription factor gene PoWRI1 was identified and cloned, having a complete open reading frame of 1269 bp and encoding 422 amino acids. Subcellular localization analysis showed that PoWRI1 is located at the nucleus. After the expression vector of PoWRI1 was constructed and transformed into wild-type Arabidopsis thaliana, it was found that the overexpression of PoWRI1 increased the expression level of downstream target genes such as BCCP2, KAS1, and PKP-β1. As a result, the seeds of transgenic plants became larger, the oil content increased significantly, and the unsaturated fatty acid content increased, which provide a scientific theoretical basis for the subsequent use of genetic engineering methods to improve the fatty acid composition and content of plant seeds.


Development ◽  
1997 ◽  
Vol 124 (17) ◽  
pp. 3221-3232 ◽  
Author(s):  
J.R. McWhirter ◽  
M. Goulding ◽  
J.A. Weiner ◽  
J. Chun ◽  
C. Murre

Pbx1 is a homeodomain transcription factor that has the ability to form heterodimers with homeodomain proteins encoded by the homeotic selector (Hox) gene complexes and increase their DNA-binding affinity and specificity. A current hypothesis proposes that interactions with Pbx1 are necessary for Hox proteins to regulate downstream target genes that in turn control growth, differentiation and morphogenesis during development. In pre B cell leukemias containing the t(1;19) chromosome translocation, Pbx1 is converted into a strong transactivator by fusion to the activation domain of the bHLH transcription factor E2A. The E2A-Pbx1 fusion protein should therefore activate transcription of genes normally regulated by Pbx1. We have used the subtractive process of representational difference analysis to identify targets of E2A-Pbx1. We show that E2A-Pbx1 can directly activate transcription of a novel member of the fibroblast growth factor family of intercellular signalling molecules, FGF-15. The FGF-15 gene is expressed in a regionally restricted pattern in the developing nervous system, suggesting that FGF-15 may play an important role in regulating cell division and patterning within specific regions of the embryonic brain, spinal cord and sensory organs.


Development ◽  
2002 ◽  
Vol 129 (11) ◽  
pp. 2591-2606 ◽  
Author(s):  
Yalda Sedaghat ◽  
Wilson F. Miranda ◽  
Margaret J. Sonnenfeld

We establish that the jing zinc-finger transcription factor plays an essential role in controlling CNS midline and tracheal cell differentiation. jing transcripts and protein accumulate from stage 9 in the CNS midline, trachea and in segmental ectodermal stripes. JING protein localizes to the nuclei of CNS midline and tracheal cells implying a regulatory role during their development. Loss of jing-lacZ expression in homozygous sim mutants and induction of jing-lacZ by ectopic sim expression establish that jing is part of the CNS midline lineage. We have isolated embryonic recessive lethal jing mutations that display genetic interactions in the embryonic CNS midline and trachea, with mutations in the bHLH-PAS genes single-minded and trachealess, and their downstream target genes (slit and breathless). Loss- and gain-of-function jing is associated with defects in CNS axon and tracheal tubule patterning. In jing homozygous mutant embryos, reductions in marker gene expression and inappropriate apoptosis in the CNS midline and trachea establish that jing is essential for the proper differentiation and survival of these lineages. These results establish that jing is a key component of CNS midline and tracheal cell development. Given the similarities between JING and the vertebrate CCAAT-binding protein AEBP2, we propose that jing regulates transcriptional mechanisms in Drosophila embryos and promotes cellular differentiation in ectodermal derivatives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Wang ◽  
Yan Bi ◽  
Yizhou Gao ◽  
Yuqing Yan ◽  
Xi Yuan ◽  
...  

The rice NAC transcriptional factor family harbors 151 members, and some of them play important roles in rice immunity. Here, we report the function and molecular mechanism of a pathogen-inducible NAC transcription factor, ONAC096, in rice immunity against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae. Expression of ONAC096 was induced by M. oryzae and by abscisic acid and methyl jasmonate. ONAC096 had the DNA binding ability to NAC recognition sequence and was found to be a nucleus-localized transcriptional activator whose activity depended on its C-terminal. CRISPR/Cas9-mediated knockout of ONAC096 attenuated rice immunity against M. oryzae and X. oryzae pv. oryzae as well as suppressed chitin- and flg22-induced reactive oxygen species burst and expression of PTI marker genes OsWRKY45 and OsPAL4; by contrast, overexpression of ONAC096 enhanced rice immunity against these two pathogens and strengthened chitin- or flg22-induced PTI. RNA-seq transcriptomic profiling and qRT-PCR analysis identified a small set of defense and signaling genes that are putatively regulated by ONAC096, and further biochemical analysis validated that ONAC096 could directly bind to the promoters of OsRap2.6, OsWRKY62, and OsPAL1, three known defense and signaling genes that regulate rice immunity. ONAC096 interacts with ONAC066, which is a positive regulator of rice immunity. These results demonstrate that ONAC096 positively contributes to rice immunity against M. oryzae and X. oryzae pv. oryzae through direct binding to the promoters of downstream target genes including OsRap2.6, OsWRKY62, and OsPAL1.


2019 ◽  
Author(s):  
Wenjuan Li ◽  
Baolei Li ◽  
Tingting Li ◽  
Ergeng Zhang ◽  
Qingjie Wang ◽  
...  

Abstract Background: The protein Kruppel-like factor 13 (KLF13) is a member of the KLF family that has been identified as a novel cardiac transcription factor which is involved in heart development. However, the relationship between KLF13 variants and CHDs in humans remains largely unknown. The present study aimed to screen the KLF13 variants in CHDs patients and genetically analyze the function of these variants. Methods: KLF13 variants were sequenced in a cohort of 309 CHD patients and population-matched healthy controls (n = 200) using targeted sequencing. To investigate the effect of variants on the functional ability of the KLF13 protein, the expressions and subcellular localization of protein, as well as the transcriptional activities of downstream genes and physically interacted with other transcription factor were assessed. Results: Two novel heterozygous variants, c.487C>T (P163S) and c.467G>A (S156N), were identified in two out of 309 CHDs patients with Tricuspid-valve atresia and transposition of the great arteries, respectively. No variants were found among healthy controls. The variant c.467G>A (S156N) increased protein expression and enhanced functionality compared with that of wild-type, without affecting the subcellular localization. The other variant, c.487C>T (P163S), did not show any abnormalities in protein expression and subcellular localization, however it eliminated the transcriptional activities of downstream target genes and physically interacted with TBX5, another cardiac transcription factor. Conclusion: Our results show that the S156N and P163S variants contributed to CHD etiology. Additionally, our findings suggest that KLF13 may be a potential gene contributing to congenital heart disease.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15031-15031 ◽  
Author(s):  
J. Zhang ◽  
Z. Jia ◽  
L. Wang ◽  
Q. Li ◽  
L. Xiangdong ◽  
...  

15031 Background: Our previous studies show that human carcinoid cells overexpress pro-angiogenic factors, vascular endothelial growth factor A (VEGF), and transcription factor Sp1 plays a critical role in VEGF inducible and constitutive expression. However, the impact of antiangiogenic therapy on the Sp1/VEGF pathway remains unclear. Method: Groups of 10 athymic BALB/c nude mice were implanted with 1.5 million human H727 carcinoid cells. Treatment with VEGF neutralizing monoclonal antibody, BEV, MIT, or BEV + MIT was initiated once implanted tumor reached 4 mm in size. Result: Treatment with BEV, suppressed human carcinoid growth in nude mice (tumor size at week 5 1280 mm3 vs 480 mm3; p < 0.001). Gene expression analyses revealed that this treatment substantially upregulated the expression of Sp1 (7 folds) and its downstream target genes, including VEGF (5 folds) and epidermal growth factor receptor (4 folds), in tumor tissues, whereas it did not have this effect on carcinoid cells in culture. Treatment with mithramycin A, an Sp1 inhibitor, suppressed the expression of Sp1 and its downstream target genes in both cell culture and tumors growing in nude mice. Median survival of mice treated with PBS, BEV, MIT, and BEV + MIT groups were 88, 112, 121, and >160 days respectively (p < 0.001). Combined treatment with bevacizumab and mithramycin A produced synergistic tumor suppression, which was consistent with suppression of the expression of Sp1 and its downstream target genes. Conclusion: Treatment with bevacizumab may block VEGF function but activate the pathway of its expression via positive feedback. Given the fact that Sp1 is an important regulator of the expression of multiple angiogenic factors, bevacizumab-initiated upregulation of Sp1 and subsequent overexpression of its downstream target genes may affect the potential angiogenic phenotype and effectiveness of antiangiogenic strategies for human carcinoid. No significant financial relationships to disclose.


2020 ◽  
Vol 21 (14) ◽  
pp. 4881 ◽  
Author(s):  
Hainan Tian ◽  
Shucai Wang

TRANSPARENT TESTA GLABRA1 (TTG1) is a WD40 repeat protein. The phenotypes caused by loss-of-function of TTG1 were observed about half a century ago, but the TTG1 gene was identified only about twenty years ago. Since then, TTG1 has been found to be a plant-specific regulator with multiple roles and multiple functional mechanisms. TTG1 is involved in the regulation of cell fate determination, secondary metabolisms, accumulation of seed storage reserves, plant responses to biotic and abiotic stresses, and flowering time in plants. In some processes, TTG1 may directly or indirectly regulate the expression of downstream target genes via forming transcription activator complexes with R2R3 MYB and bHLH transcription factors. Whereas in other processes, TTG1 may function alone or interact with other proteins to regulate downstream target genes. On the other hand, the studies on the regulation of TTG1 are very limited. So far, only the B3-domain family transcription factor FUSCA3 (FUS3) has been found to regulate the expression of TTG1, phosphorylation of TTG1 affects its interaction with bHLH transcription factor TT2, and TTG1 proteins can be targeted for degradation by the 26S proteasome. Here, we provide an overview of TTG1, including the identification of TTG1, the functions of TTG1, the possible function mechanisms of TTG1, and the regulation of TTG1. We also proposed potential research directions that may shed new light on the regulation and functional mechanisms of TTG1 in plants.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mennatallah Elfar ◽  
Asma Amleh

miRNAs are small non-coding RNA sequences of 18-25 nucleotides. They can regulate different cellular pathways by acting on tumor suppressors, oncogenes, or both. miRNAs are mostly tissue-specific, and their expression varies depending on the cancer or the tissue in which they are found. hsa-miR-590-3p was found to be involved in several types of cancers. In this study, we identified potential downstream target genes of hsa-miR-590-3p computationally. Several bioinformatics tools and more than one approach were used to identify potential downstream target genes of hsa-miR-590-3p. CX3CL1, SOX2, N-cadherin, E-cadherin, and FOXA2 were utilized as potential downstream target genes of hsa-miR-590-3p. SNU449 and HepG2, hepatocellular carcinoma cell lines, were used to carry out various molecular techniques to further validate our in silico results. mRNA and protein expression levels of these genes were detected using RT-PCR and western blotting, respectively. Co-localization of hsa-miR-590-3p and its candidate downstream target gene, SOX2, was carried out using a miRNA in situ hybridization combined with immunohistochemistry staining through anti-SOX2. The results show that there is an inverse correlation between hsa-miR-590-3p expression and SOX2 protein expression in SNU449. Subsequently, we suggest that SOX2 can be a direct downstream target of has-miR-590-3p indicating that it may have a role in the self-renewal and self-maintenance of cancer cells. We also suggest that CX3CL1, E-cadherin, N-cadherin, and FOXA2 show a lot of potential as downstream target genes of hsa-miR-590-3p signifying its role in epithelial-mesenchymal transition. Studying the expression of hsa-miR-590-3p downstream targets can enrich our understanding of the cancer pathogenesis and how it can be used as a therapeutic tool.


Sign in / Sign up

Export Citation Format

Share Document