scholarly journals Atypical role of sprouty in p21 dependent inhibition of cell proliferation in colorectal cancer

2015 ◽  
Vol 55 (9) ◽  
pp. 1355-1368 ◽  
Author(s):  
Qiong Zhang ◽  
Katherine Shim ◽  
Kevin Wright ◽  
Alexander Jurkevich ◽  
Sharad Khare
2019 ◽  
Author(s):  
Mohammad Aziz ◽  
Saeed Al Mahri ◽  
Amal Alghamdi ◽  
Maaged AlAkiel ◽  
Monira Al Aujan ◽  
...  

Abstract Background Colorectal cancer is a worldwide problem which has been associated with changes in diet and lifestyle pattern. As a result of colonic fermentation of dietary fibres, short chain free fatty acids are generated which activate Free Fatty Acid Receptors 2 and 3 (FFAR2 and FFAR3). FFAR2 and FFAR3 genes are abundantly expressed in colonic epithelium and play an important role in the metabolic homeostasis of colonic epithelial cells. Earlier studies point to the involvement of FFAR2 in colorectal carcinogenesis. Methods Transcriptome analysis console was used to analyse microarray data from patients and cell lines. We employed shRNA mediated down regulation of FFAR2 and FFAR3 genes which was assessed using qRT-PCR. Assays for glucose uptake and cAMP generation was done along with immunofluorescence studies. For measuring cell proliferation, we employed real time electrical impedance based assay available from xCelligence. Results Microarray data analysis of colorectal cancer patient samples showed a significant down regulation of FFAR2 gene expression. This prompted us to study the FFAR2 in colorectal cancer. Since, FFAR3 shares significant structural and functional homology with FFAR2, we knocked down both these receptors in colorectal cancer cell line HCT 116. These modified cell lines exhibited higher proliferation rate and were found to have increased glucose uptake as well as increased level of GLUT1. Since, FFAR2 and FFAR3 signal through G protein subunit (Gαi), knockdown of these receptors was associated with increased cAMP. Inhibition of PKA did not alter the growth and proliferation of these cells indicating a mechanism independent of cAMP/PKA pathway. Conclusion: Our results suggest role of FFAR2/FFAR3 genes in increased proliferation of colon cancer cells via enhanced glucose uptake and exclude the role of protein kinase A mediated cAMP signalling. Alternate pathways could be involved that would ultimately result in increased cell proliferation as a result of down regulated FFAR2/FFAR3 genes. This study paves the way to understand the mechanism of action of short chain free fatty acid receptors in colorectal cancer.


Author(s):  
Luciana Petti ◽  
Giulia Rizzo ◽  
Federica Rubbino ◽  
Sudharshan Elangovan ◽  
Piergiuseppe Colombo ◽  
...  

Abstract Background Sphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer. Information on whether S1PR2 participates in colorectal carcinogenesis/cancer is scanty, and we set out to fill the gap. Methods We screened expression changes of S1PR2 in human CRC and matched normal mucosa specimens [N = 76]. We compared CRC arising in inflammation-driven and genetically engineered models in wild-type (S1PR2+/+) and S1PR2 deficient (S1PR2−/−) mice. We reconstituted S1PR2 expression in RKO cells and assessed their growth in xenografts. Functionally, we mimicked the ablation of S1PR2 in normal mucosa by treating S1PR2+/+ organoids with JTE013 and characterized intestinal epithelial stem cells isolated from S1PR2−/−Lgr5-EGFP- mice. Results S1PR2 expression was lost in 33% of CRC; in 55%, it was significantly decreased, only 12% retaining expression comparable to normal mucosa. Both colitis-induced and genetic Apc+/min mouse models of CRC showed a higher incidence in size and number of carcinomas and/or high-grade adenomas, with increased cell proliferation in S1PR2−/− mice compared to S1PR2+/+ controls. Loss of S1PR2 impaired mucosal regeneration, ultimately promoting the expansion of intestinal stem cells. Whereas its overexpression attenuated cell cycle progression, it reduced the phosphorylation of AKT and augmented the levels of PTEN. Conclusions In normal colonic crypts, S1PR2 gains expression along with intestinal epithelial cells differentiation, but not in intestinal stem cells, and contrasts intestinal tumorigenesis by promoting epithelial differentiation, preventing the expansion of stem cells and braking their malignant transformation. Targeting of S1PR2 may be of therapeutic benefit for CRC expressing high Lgr5. Graphical Abstract. Schematic drawing of the role of S1PR2 in normal mucosa and colorectal cancer. In the normal mucosa, S1PR2 is highly expressed by differentiated cells at the upper region of both colon and intestinal crypts (S1PR2 ON), but not by the undifferentiated stem cell at the base of the crypts (S1PR2 OFF), in which acts as a negative proliferative regulator promoting epithelial differentiation. Its loss leads to the expansion of stem cells and reduced levels of PTEN and Axin-2, two negative regulators respectively of PI3K/AKT and Wnt signaling that control β-catenin signaling. The translocation of β-catenin into the nucleus promotes the transcription of target genes involved in the proliferation and malignant transformation. Thereby, S1PR2 works in the intestine as a tumor suppressor


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhengxiang Zhang ◽  
Yunxiang Tao ◽  
Qingling Hua ◽  
Juan Cai ◽  
Xiaobing Ye ◽  
...  

Small nucleolar RNAs (snoRNAs) play a crucial role during colorectal cancer (CRC) development. The study of SNORA71A is few, and its role in CRC is unknown. This study focused on screening abnormal snoRNAs in CRC and exploring the role of key snoRNA in CRC. The expression pattern of snoRNAs in 3 CRC and 3 normal colon tissues was detected via small RNA sequencing. The six candidate snoRNAs were identified by quantitative PCR (qPCR). Subsequently, the expression level of SNORA71A was further verified through the Cancer Genome Atlas (TCGA) data analysis and qPCR. The CCK8 and transwell assays were used to detect the functional role of SNORA71A in CRC cells. The integrated analysis of snoRNA expression profile indicated that a total 107 snoRNAs were significantly differentially expressed (DE) in CRC tissues compared with normal tissues, including 45 upregulated and 62 downregulated snoRNAs. Bioinformatics analysis revealed that the DE snoRNAs were mainly implicated in “detection of chemical stimulus involved in sensory perception of smell” and “sensory perception of smell” in the biological process. The DE snoRNAs were preferentially enriched in “olfactory transduction” and “glycosphingolipid biosynthesis-ganglio series pathway.” The expression of SNORA71A was upregulated in CRC tissues and cells. SNORA71A expression showed statistically significant correlations with TNM stage ( P = 0.0196 ) and lymph node metastasis ( P = 0.0189 ) and can serve as biomarkers for CRC. Importantly, SNORA71A significantly facilitated the CRC cell proliferation, migration, and invasion. Our findings indicate that SNORA71A screened by sequencing acted as an oncogene and promoted proliferation, migration, and invasion ability of CRC cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Shihua Ding ◽  
Shaohui Tang ◽  
Min Wang ◽  
Donghai Wu ◽  
Haijian Guo

Background and Aims. Acyl-CoA synthetase 5 (ACS5) has been reported to be associated with the development of various cancers, but the role of it in colorectal cancer (CRC) is not well understood. The present study aimed to explore the potential role of ACS5 in the development and progression of CRC. Methods. ACS5 expression in CRC tissues and CRC cell lines was examined, and its clinical significance was analyzed. The role of ACS5 in cell proliferation, apoptosis, and invasion was examined in vitro. Results. We found that ACS5 expression was upregulated in CRC cells and CRC tissues and that high ACS5 expression was more frequent in CRC patients with excess muscular layer and with poor tumor differentiation. Furthermore, knockdown of ACS5 in HT29 and SW480 cells significantly dampened cell proliferation, induced cell apoptosis, and reduced cell migration and invasion. In contrast, the ectopic overexpression of ACS5 in LOVO and SW620 cells remarkably promoted cell proliferation, inhibited cell apoptosis, and enhanced cell migration and invasion. Enhanced cell growth and invasion ability mediated by the gain of ACS5 expression were associated with downregulation of caspase-3 and E-cadherin and upregulation of survivin and CD44. Conclusions. Our data demonstrate that ACS5 can promote the growth and invasion of CRC cells and provide a potential target for CRC gene therapy.


Author(s):  
Ruohang He ◽  
Chaoqun Han ◽  
Ying Li ◽  
Wei Qian ◽  
Xiaohua Hou

BackgroundMesenchymal stem cells (MSCs) treatment showed promising results in inflammatory bowel disease in both rodent models and patients. Nevertheless, previous studies conducted conflicting results on preclinical tumor models treated with MSCs concerning their influence on tumor initiation and progression. This study is designed to demonstrate the role of bone marrow-derived MSCs and the potential mechanism in the colitis-associated colon cancer (CAC) model.MethodsBone marrow-derived MSCs were isolated from green fluorescent protein-transgenic mice, cultured, and identified by flow cytometry. Azoxymethane and dextran sulfate sodium were administrated to establish the CAC mouse model, and MSCs were infused intraperitoneally once per week. The mice were weighed weekly, and colon length, tumor number, and average tumor size were assessed after the mice were killed. MSC localization was detected by immunofluorescence staining; tumor cell proliferation and apoptosis were measured by immunohistochemistry staining of Ki-67 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay, respectively. The colonic tumor tissues were isolated for RNA-seq, and fecal samples were collected for 16S ribosomal RNA sequencing of the microbiome.ResultsAfter injection intraperitoneally, MSCs migrated to the intestine and inhibited the initiation of colitis-associated colorectal cancer. This inhibition effect was marked by less weight loss, longer colon length, and reduced tumor numbers. Moreover, MSCs reduced tumor cell proliferation and induced tumor cell apoptosis. Furthermore, MSCs could inhibit chronic inflammation assessed by RNA-sequencing and promote gut microbiome normalization detected by 16S ribosomal RNA sequencing.ConclusionThe results proved that MSCs could migrate to the colon, inhibit chronic inflammation, and regulate gut microbiome dysbiosis to suppress the development of CAC.


2021 ◽  
Author(s):  
Zhang Jieling ◽  
Li Kai ◽  
Zheng Huifen ◽  
Zhu Yiping

Abstract Background: MicroRNAs play an important role in the genesis and progression of tumors, including colorectal cancer (CRC), which has a high morbidity and mortality rate. In this research, the role of miR-495-3p and HMGB1 in CRC was investigated.Methods: We performed qRT-PCR to detect the expression of miR-495-3p in colorectal cancer tissues and cell lines. Functional experiments such as CCK-8 assay, EDU assay, Transwell assay and apoptosis assay were conducted to explore the effects of miR-495-3p on the proliferation, migration and apoptosis of CRC cells in vitro. Then, the use of database prediction, dual-luciferase reporter gene assay and functional experiments verified the role of miR-495-3p target gene HMGB1 in CRC. Finally, rescue experiments was performed to investigate whether overexpression of HMGB1 could reverse the inhibitory effect of miR-495-3p on CRC cell proliferation in vivo and in vitro.Results: miR-495-3p was down-regulated in colorectal cancer tissues and cell lines, and could inhibit the proliferation and migration of colorectal cancer cells, and promote cell apoptosis. The database prediction and dual-luciferase reporter gene assay showed that HMGB1 was the downstream target gene of miR-495-3p. We finally demonstrated that miR-495-3p inhibited CRC cell proliferation by targeting HMGB1 in vitro and in vivo.Conclusion: Our research shows that miR-495-3p inhibits the progression of colorectal cancer by down-regulating the expression of HMGB1, which indicates that miR-495-3p may become a potential therapeutic target for colorectal cancer.


2020 ◽  
Vol 16 (25) ◽  
pp. 1911-1920
Author(s):  
Feifei Chu ◽  
Yuanbo Cui ◽  
Kunkun Li ◽  
Xingguo Xiao ◽  
Li Zhang ◽  
...  

Aim: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. This study aimed to investigate the role of long noncoding RNA THOR in CRC. Materials & methods: The expression of THOR in 103 cases of CRC tissues and four CRC cell lines was examined by quantitative real-time PCR. Cell counting kit-8 and colony formation assays were applied to detect cell proliferation, and flow cytometry was used for testing cell cycle and apoptosis of CRC. Results: We found that THOR was highly expressed in CRC and correlated with tumor node metastasis stage, histological subtype, tumor size and differentiation and survival in CRC patients. Meanwhile, knockdown of THOR significantly suppressed cell proliferation and cell cycle of CRC, whereas promoted cell apoptosis. Conclusion: Our findings suggest that THOR is an oncogenic long noncoding RNA in CRC and a potential prognostic biomarker for this cancer.


2015 ◽  
Vol 37 (3) ◽  
pp. 1044-1054 ◽  
Author(s):  
Hong-tao Li ◽  
Hui Zhang ◽  
Yong Chen ◽  
Xian-fu Liu ◽  
Jun Qian

Background/Aims: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths globally, with many oncogenes and tumor suppressors involved. The miRNAs are small non-coding RNAs known to play a vital role in the pathogenesis of CRC. The miR-423-3p was reported to act as an oncogene; however, its role in CRC growth remains unknown. Methods: qPCR assay was used to detect miR-423-3p expression in CRC specimens. Cell proliferation assay and transwell assay were conducted to evaluate CRC cell proliferation and migration. Luciferase reporter assay was to identify the target gene of miR-423-3p. And tumorigenesis model was established to test the role of miR-423-3p in CRC development in vivo. Results: Here, we showed that miR-423-3p was significantly up regulated in CRC tissues and cells compared with normal tissues and cells. Overexpression of miR-423-3p promoted CRC cell proliferation via enhancing the G1/S transition phase of the cell cycle, while inhibition of miR-423-3p repressed cell growth. Further studies showed that p21Cip1/Waf1 mediated the function of miR-423-3p, and overexpression of p21Cip1/Waf1 reversed the augmented effect of miR-423-3p on cell proliferation. Importantly, all these data were validated in the tumorigenesis assay in vivo. Conclusions: In conclusion, our findings demonstrated a critical impact of miR-423-3p on CRC growth.


2011 ◽  
Vol 70 (2) ◽  
pp. 194-204 ◽  
Author(s):  
Elizabeth K. Lund ◽  
Nigel J. Belshaw ◽  
Giles O. Elliott ◽  
Ian T. Johnson

Colorectal cancer (CRC) is a major cause of premature death in the UK and many developed countries. However, the risk of developing CRC is well recognised to be associated not only with diet but also with obesity and lack of exercise. While epidemiological evidence shows an association with factors such as high red meat intake and low intake of vegetables, fibre and fish, the mechanisms underlying these effects are only now being elucidated. CRC develops over many years and is typically characterised by an accumulation of mutations, which may arise as a consequence of inherited polymorphisms in key genes, but more commonly as a result of spontaneously arising mutations affecting genes controlling cell proliferation, differentiation, apoptosis and DNA repair. Epigenetic changes are observed throughout the progress from normal morphology through formation of adenoma, and the subsequent development of carcinoma. The reasons why this accumulation of loss of homoeostatic controls arises are unclear but chronic inflammation has been proposed to play a central role. Obesity is associated with increased plasma levels of chemokines and adipokines characteristic of chronic systemic inflammation, and dietary factors such as fish oils and phytochemicals have been shown to have anti-inflammatory properties as well as modulating established risk factors such as apoptosis and cell proliferation. There is also some evidence that diet can modify epigenetic changes. This paper briefly reviews the current state of knowledge in relation to CRC development and considers evidence for potential mechanisms by which diet may modify risk.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Gao Tan ◽  
Chongyang Huang ◽  
Jiaye Chen ◽  
Fachao Zhi

Abstract Background Pyroptosis is a form of proinflammatory gasdermin-mediated programmed cell death. Abnormal mucosal inflammation in the intestine is a critical risk factor for colitis-associated colorectal cancer (CAC). However, it is unknown whether pyroptosis participates in the development of CAC. Methods To investigate the role of gasdermin E (GSDME)-mediated pyroptosis in the development of CAC, Gsdme−/− mice and their wild-type (WT) littermate controls were challenged with azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce a CAC model. Neutralizing antibodies against high-mobility group box protein 1 (HMGB1) were used to determine the role of HMGB1 in CAC. To identify the role of ERK1/2 in HMGB1-induced colon cancer cell proliferation, we performed western blotting and CCK8 assays using the ERK1/2-specific inhibitor U0126 in CT26 colon cancer cells. Results In the CAC model, Gsdme−/− mice exhibited reduced weight loss and colon shortening, attenuated rectal prolapse, and reduced tumor numbers and sizes compared to WT littermates. Furthermore, treatment with neutralizing anti-HMGB1 antibodies decreased the numbers and sizes of tumors, ERK1/2 activation and proliferating cell nuclear antigen (PCNA) expression in AOM/DSS-challenged WT mice. In addition, our in vitro experiments demonstrated that HMGB1 induced proliferation and PCNA expression in CT26 colon cancer cells through the ERK1/2 pathway. Conclusion GSDME-mediated pyroptosis promotes the development of CAC by releasing HMGB1, which induces tumor cell proliferation and PCNA expression through the ERK1/2 pathway. This finding reveals a previously unrecognized link between pyroptosis and CAC tumorigenesis and offers new insight into CAC pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document