Beneficial effects ofCentella asiatica aqueous extract against arsenic-induced oxidative stress and essential metal status in rats

2007 ◽  
Vol 21 (10) ◽  
pp. 980-988 ◽  
Author(s):  
S. J. S. Flora ◽  
Richa Gupta
Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
NM De Gouveia ◽  
IB Moraes ◽  
RMF Sousa ◽  
MB Neto ◽  
AV Mundim ◽  
...  

Author(s):  
Krishna Reddy BV ◽  
Avinash Kumar Reddy G ◽  
Sujitha V ◽  
Manasa A

DM otherwise diabetes is now a days an epidemic with the percentage of patient population rising to almost 10% of the world population. Out of all the DM complications, cataract leads the way contributing to disabilities to about 60% of diabetic population. But the pathogenesis of DM cataract is still a half-understood area of medicine there by posing a problem in the therapy. The data that we have till now gives us enough evidence to advocate the oxidative stress has a major role for the pathogenesis of DM complications like DMnephropathy, DMneuropathy, and cardiac hypertrophy, which suggests the oxidative stress is a central feature of diabetes. In the current research, the pharmacological evaluation of Fisetin for its DM based anti-cataract property was performed. This research concentrates to estimate the possible involvement of Nrf-2 / heme oxygenase (HO)-pathway in the observed therapeutic effect, if any. The data obtained in this study also indicate that the observed beneficial effects mainly due to activation of Nrf2/HO-1 pathway. These effects probably result in increased tissue anti-oxidant status as well as decreased free radical production, which ultimately responsible for the observed beneficial effects of Fisetin against hyperglycemia-induced cataract.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 612
Author(s):  
Mee Ree Kim

Antioxidant ingredients are known to contribute to the beneficial effects of natural products in health promotion as well as disease prevention by reducing oxidative stress, caused by reactive oxygen or nitrogen species, in biological systems [...]


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3442
Author(s):  
Yaowared Chulikhit ◽  
Wichitsak Sukhano ◽  
Supawadee Daodee ◽  
Waraporn Putalun ◽  
Rakvajee Wongpradit ◽  
...  

The effects of the phytoestrogen-enriched plant Pueraria mirifica (PM) extract on ovari-ectomy (OVX)-induced cognitive impairment and hippocampal oxidative stress in mice were investigated. Daily treatment with PM and 17β-estradiol (E2) significantly elevated cognitive behavior as evaluated by using the Y maze test, the novel object recognition test (NORT), and the Morris water maze test (MWM), attenuated atrophic changes in the uterus and decreased serum 17β-estradiol levels. The treatments significantly ameliorated ovariectomy-induced oxidative stress in the hippocampus and serum by a decrease in malondialdehyde (MDA), an enhancement of superoxide dismutase, and catalase activity, including significantly down-regulated expression of IL-1β, IL-6 and TNF-α proinflammatory cytokines, while up-regulating expression of PI3K. The present results suggest that PM extract suppresses oxidative brain damage and dysfunctions in the hippocampal antioxidant system, including the neuroinflammatory system in OVX animals, thereby preventing OVX-induced cognitive impairment. The present results indicate that PM exerts beneficial effects on cognitive deficits for which menopause/ovariectomy have been implicated as risk factors.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 335
Author(s):  
Estefanía Bravo-Sánchez ◽  
Donovan Peña-Montes ◽  
Sarai Sánchez-Duarte ◽  
Alfredo Saavedra-Molina ◽  
Elizabeth Sánchez-Duarte ◽  
...  

Diabetes mellitus (DM) constitutes one of the public health problems today. It is characterized by hyperglycemia through a defect in the β-cells function and/or decreased insulin sensitivity. Apocynin has been tasted acting directly as an NADPH oxidase inhibitor and reactive oxygen species (ROS) scavenger, exhibiting beneficial effects against diabetic complications. Hence, the present study’s goal was to dissect the possible mechanisms by which apocynin could mediate its cardioprotective effect against DM-induced oxidative stress. Male Wistar rats were assigned into 4 groups: Control (C), control + apocynin (C+A), diabetes (D), diabetes + apocynin (D+A). DM was induced with streptozotocin. Apocynin treatment (3 mg/kg/day) was applied for 5 weeks. Treatment significantly decreased blood glucose levels and insulin resistance in diabetic rats. In cardiac tissue, ROS levels were higher, and catalase enzyme activity was reduced in the D group compared to the C group; the apocynin treatment significantly attenuated these responses. In heart mitochondria, Complexes I and II of the electron transport chain (ETC) were significantly enhanced in the D+A group. Total glutathione, the level of reduced glutathione (GSH) and the GSH/ oxidized glutathione (GSSG) ratio were increased in the D+A group. Superoxide dismutase (SOD) and the glutathione peroxidase (GSH-Px) activities were without change. Apocynin enhances glucose uptake and insulin sensitivity, preserving the antioxidant defense and mitochondrial function.


2021 ◽  
Vol 22 (9) ◽  
pp. 4667
Author(s):  
Michaela Shishmanova-Doseva ◽  
Dimitrinka Atanasova ◽  
Yordanka Uzunova ◽  
Lyubka Yoanidu ◽  
Lyudmil Peychev ◽  
...  

Clinically, temporal lobe epilepsy (TLE) is the most prevalent type of partial epilepsy and often accompanied by various comorbidities. The present study aimed to evaluate the effects of chronic treatment with the antiepileptic drug (AED) lacosamide (LCM) on spontaneous motor seizures (SMS), behavioral comorbidities, oxidative stress, neuroinflammation, and neuronal damage in a model of TLE. Vehicle/LCM treatment (30 mg/kg, p.o.) was administered 3 h after the pilocarpine-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. Our study showed that LCM attenuated the number of SMS and corrected comorbid to epilepsy impaired motor activity, anxiety, memory, and alleviated depressive-like responses measured in the elevated plus maze, object recognition test, radial arm maze test, and sucrose preference test, respectively. This AED suppressed oxidative stress through increased superoxide dismutase activity and glutathione levels, and alleviated catalase activity and lipid peroxidation in the hippocampus. Lacosamide treatment after SE mitigated the increased levels of IL-1β and TNF-α in the hippocampus and exerted strong neuroprotection both in the dorsal and ventral hippocampus, basolateral amygdala, and partially in the piriform cortex. Our results suggest that the antioxidant, anti-inflammatory, and neuroprotective activity of LCM is an important prerequisite for its anticonvulsant and beneficial effects on SE-induced behavioral comorbidities.


Sign in / Sign up

Export Citation Format

Share Document