Analyisis of the Influence of the Shape of the Matrix on the Compaction of Porous Powder Bodies of “Iron-Cast Iron-Glass” Under Imprecise Information

Author(s):  
T. G. Jabbarov
1984 ◽  
Vol 34 ◽  
Author(s):  
A. Fontaine ◽  
G. Zambelli

ABSTRACTThe rupture behaviour of lamellar grey cast iron under tension depends on the overall damage suffered by the heterogeneous microstructure. In order to quantify the influence of microstructural components on the rupture behaviour of the material, it is therefore preferable to apply “Damage Mechanics” concepts rather than “Linear Fracture Mechanics”. In this preliminary study the damage process is assumed to be isotropic and two parameters are considered; firstly a damage limit σ0 and secondly, a damage rate B. Measurements made on a grey cast iron, cast in three different cross sections, show that these damage parameters may be used to separate the contributions of the graphite network and the matrix wich interact in the degradation process of the heterogeneous microstructure of lamellar grey cast iron.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4535-4540
Author(s):  
CHANG-MIN SUH ◽  
BYUNG-WON HWANG ◽  
WOO-HO BAE

In order to clarify the cracking and failure behavior of gray cast iron brake blocks that are used for the railway applications, macro- and micro observations regarding the cracks and the micro-structure of the used brake blocks were examined. Three brake blocks, which have different degrees of hot spots and cracking during the actual application, were selected for testing. In addition, a thermal-mechanical coupled finite element analysis (FEA) was applied to calculate the temperature and the stress field in the brake blocks during braking. As a result, it was observed that surface cracks were initiated at the hot spots and propagated into the matrix. From the observation of dispersed graphites close to the crack path, it can be said that the deterioration of materials due to the frictional heat of braking made it easy to initiate cracks at the hot spot. The hardness of the brake block was recommended to be under 85 by the Rockwell B scale in order to prevent hot spots and crack initiation. From the FEA, the procedure for the occurrence of hot spots and cracks was successfully simulated by assuming the surface roughness on the slid surface of the brake block.


2004 ◽  
Vol 449-452 ◽  
pp. 533-536
Author(s):  
M. Aoyama ◽  
K. Tahashi ◽  
K. Matsuno

The present study examined the effects of heat treatment and the addition of Cu-Ni alloy on the corrosion resistance of the matrix of spheroidal graphite cast iron in aqueous environments. Test materials of white cast iron and carbon steel were used for comparison with spheroidal graphite cast iron. The alloy spheroidal graphite cast iron that added Cu and Ni was prepared. The spheroidal graphite cast iron was subjected to three kinds of heat treatment to adjust the matrix: annealing, oil quenching, and austemper heat treatment. In electrochemical tests, measurements of corrosion electrode potential and cathode and anode polarization were used. The following was clarified from the relationship between the electrode potential and current density of each of the materials in each of the solution. The alloy spheroidal graphite cast iron had a high corrosion electrode potential owing to the addition of Cu-Ni, and tended to have a low corrosion current density. This demonstrates that in any of the materials having a matrix adjusted by heat treatment, the addition of Cu-Ni increased the corrosion resistance. The corrosion current density was highest in a sulfuric acid environment.


2011 ◽  
Vol 239-242 ◽  
pp. 990-993
Author(s):  
Ai Qin Wang ◽  
Shu Li Wang ◽  
Jing Pei Xie

In this paper, the WC and high-Cr Cast Iron layer were obtained on the surface of ZG30Cr steel by casting-penetrating process, the organization and wear properties of penetrating layer were studied. The results show that the layer is dense, without pores, slag and other defects, the penetrating layer and substrate are metallurgical bonding. When 20 %WC and 80 % Cr-Fe with are added to permeability agent, the penetrating layer has the best wear resistance, is 11.3 times the matrix materials.


2010 ◽  
Vol 457 ◽  
pp. 279-284 ◽  
Author(s):  
Masahito Tanaka ◽  
Kazumichi Shimizu ◽  
Daijiro Ito ◽  
Toru Noguchi

The purpose of this study is to investigate the fatigue characteristic and fatigue fracture mechanism of the high V-Cr-Ni spheroidal carbide cast iron (SCI-VCrNi) with spheroidal vanadium carbide (VC) dispersed within austenitic stainless matrix microstructure. The SCI-VCrNi that has high hardness was developed by 10mass%V adding to 18-8 stainless steel with spheroidal VC is distributed in the matrix. Firstly from the plane bending, the fatigue limit σw has been found to the 358MPa of SCI-VCrNi. Secondly, fracture surface observations were performed to clarify the fatigue mechanism of SCI-VCrNi. The fracture surface of SCI-VCrNi was so rough that the beach mark could not be observed. So, SEM was employed to observe, the fatigue fracture surface which showed a particular fatigue pattern. Also, many fracture cracks of VC were observed. In addition, the secondary cracks are shown at the interface between VC and the matrix. It can be suggested that the bondability between VC and the matrix is strong, and therefore, the propagation of cracks was delayed by the breakage of VC.


2012 ◽  
Vol 565 ◽  
pp. 650-655
Author(s):  
Qi Zhang ◽  
Zheng Yi Jiang ◽  
Guo Liang Xie ◽  
Dong Bin Wei ◽  
Jing Tao Han

A cast iron/low carbon steel sandwich-structured bimetal fabricated through composite casting, followed by hot rolling and hot compression (40% reduction) in a vacuum, and water quenched using Gleeble 3500 thermomechanical simulator. The microstructure of a predominantly martensitic structure is transferred to a matrix with an amount of austenite. The measured results show that the macro-hardness is significantly lower due to the evolution of matrix. A considerable amount of secondary carbides were precipitated from the matrix. This study also shows that a significant difference in the value of coefficient of friction (COF) at the end when hot rolling (HR) was tested under three sets of sliding wear conditions, while those for hot rolling and heat treatment (HT) tends to be merged. An increased wear resistance of interfacial zone is expectable.


2017 ◽  
Vol 17 (1) ◽  
pp. 121-126 ◽  
Author(s):  
D. Medyński ◽  
A. Janus ◽  
S. Zaborski

Abstract The paper presents influence of soaking parameters (temperature and time) on structure and mechanical properties of spheroidal graphite nickel-manganese-copper cast iron, containing: 7.2% Ni, 2.6% Mn and 2.4% Cu. Raw castings showed austenitic structure and relatively low hardness (150 HBW) guaranteeing their good machinability. Heat treatment consisted in soaking the castings within 400 to 600°C for 2 to 10 hours followed by air-cooling. In most cases, soaking caused changes in structure and, in consequence, an increase of hardness in comparison to raw castings. The highest hardness and tensile strength was obtained after soaking at 550°C for 6 hours. At the same time, decrease of the parameters related to plasticity of cast iron (elongation and impact strength) was observed. This resulted from the fact that, in these conditions, the largest fraction of fine-acicular ferrite with relatively high hardness (490 HV0.1) was created in the matrix. At lower temperatures and after shorter soaking times, hardness and tensile strength were lower because of smaller degree of austenite transformation. At higher temperatures and after longer soaking times, fine-dispersive ferrite was produced. That resulted in slightly lower material hardness.


2020 ◽  
Vol 45 (2) ◽  
pp. 20-27
Author(s):  
Kayode I. Fesomade ◽  
Damilola D. Alewi ◽  
Saliu O. Seidu ◽  
Sheriff O. Saka ◽  
Bonaventure I. Osuide ◽  
...  

This study investigates the influence of palm kernel shell ash (PKSA) on mechanical and wear properties of white cast iron (WCI) particularly its influence on its microstructure, elemental composition, hardness and wear resistance. The PKSA was characterized to determine its elemental composition, and it was found to contain high amount of silicon (Si) and iron (Fe) followed by calcium (Ca) and other trace elements. The cast iron was cast into rods of specific dimension with sand casting method using rotary furnace to re-melt cast iron scrap. The WCI rods were then cut into bits for the various test. Heat treatment operation was carried out to determine its properties. Upon completion of the examinations, it was found that the PKSA increased the cementite phase within the matrix of the cast iron, and reduced the pearlitic phase and graphite formation, which gave it increased hardness, and perfect wear resistance due to the increment in carbon content and reduction in silicon content. Also, upon heat treatment, it was found that the PKSA reduced the pearlitic phase within the matrix of the cast iron, increases the formation of transformed ledeburites, austenitic dendrites and tempered graphite, which lead to increased machinability and ductility as well as to reduced hardness, and wear resistance when compared to non-heat treated samples.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2596
Author(s):  
Aida B. Moreira ◽  
Laura M. M. Ribeiro ◽  
Pedro Lacerda ◽  
Ricardo O. Sousa ◽  
Ana M. P. Pinto ◽  
...  

High-chromium white cast iron (WCI) specimens locally reinforced with WC–metal matrix composites were produced via an ex situ technique: powder mixtures of WC and Fe cold-pressed in a pre-form were inserted in the mold cavity before pouring the base metal. The microstructure of the resulting reinforcement is a matrix of martensite (α’) and austenite (γ) with WC particles evenly distributed and (Fe,W,Cr)6C carbides that are formed from the reaction between the molten metal and the inserted pre-form. The (Fe,W,Cr)6C precipitation leads to the hypoeutectic solidification of the matrix and the final microstructure consists of martensite, formed from primary austenite during cooling and eutectic constituent with (Fe,Cr)7C3 and (Fe,W,Cr)6C carbides. The presence of a reaction zone with 200 µm of thickness, between the base metal and the composite should guarantee a strong bonding between these two zones.


2019 ◽  
Vol 295 ◽  
pp. 43-48
Author(s):  
Wen Tao Zhou ◽  
Chen Yang ◽  
Xi Xi Cui ◽  
Zhong Yang Liang ◽  
Xuan Wang ◽  
...  

An unalloyed ductile cast iron with a multiphase structure is designed by a novel austempering process. The designed austempering treatment consists of initial rapid quenching to 180°C after austenizing at 890°C for 20min, and finally austempering at 220°C for 240min. A multiphase structure comprising lenticular/needle-like prior martensite, fine needle bainitic ferrite and film retained austenite is obtained. The excellent mechanical properties, with a tensile strength of 1530MPa and an elongation of 3.1% can be achieved by controlling the matrix microstructure of 12% prior martensite, 15% retained austenite with 1.64% carbon content, and 73% bainitic ferrite. This is mainly attributed to prior marteniste which can promote refinement of multiphase colonies.


Sign in / Sign up

Export Citation Format

Share Document