Enhancement of Infused CFRP Primary Structure Mechanical Properties Using Interleaving Thermoplastic Veils

Author(s):  
Daniel Breen
2017 ◽  
Vol 17 (2) ◽  
pp. 145-150
Author(s):  
T. Wróbel ◽  
J. Szajnar ◽  
D. Bartocha ◽  
M. Stawarz

AbstractThe paper presents the research results of horizontal continuous casting of ingots of aluminium alloy containing 2% wt. silicon (AlSi2). Together with the casting velocity (velocity of ingot movement) we considered the influence of electromagnetic stirring in the area of the continuous casting mould on refinement of the ingot’s primary structure and their selected mechanical properties, i.e. tensile strength, yield strength, hardness and elongation. The effect of primary structure refinement and mechanical properties obtained by electromagnetic stirring was compared with refinement obtained by using traditional inoculation, which consists in introducing additives, i.e. Ti, B and Sr, to the metal bath. On the basis of the obtained results we confirmed that inoculation done by electromagnetic stirring in the range of the continuous casting mould guarantees improved mechanical properties and also decreases the negative influence of casting velocity, thus increasing the structure of AlSi2 continuous ingots.


1978 ◽  
Vol 51 (5) ◽  
pp. 1006-1022 ◽  
Author(s):  
B. Wijayarathna ◽  
W. V. Chang ◽  
R. Salovey

Abstract Vulcanizate properties such as tensile strength, abrasion resistance, and tear resistance, are often enhanced by the introduction of structural heterogeneity. This is usually achieved by incorporating fillers into the polymer matrix. In addition to the type of filler and polymer used, mechanical properties depend on factors such as filler particle size, distribution, filler-polymer interaction, and network homogeneity. These factors are largely governed by the conditions of the mixing. The most widely used filler in rubber is carbon black. Carbon black, produced by the pyrolysis of hydrocarbons, is in the form of fused primary aggregates which flocculate to form large secondary aggregates held together by van der Waal forces. The term structure, as applied to carbon black, commonly refers to both primary and secondary aggregates and is designated as primary or secondary structure. The reinforcement of rubber by carbon black depends considerably on the particle size and structure of the black used. Voet and associates have shown evidence that the primary structure is not broken down by shearing action during mixing. However, Heckman and Medalia and Gessler claim that fracture of the primary structure could result from severe mechanical shear. The general consensus is that breakdown of the primary structure of carbon black is not extensive in the usual mixing process. Boonstra and Medalia, among others, reported that large agglomerates remaining after insufficient mixing have a deleterious effect on the rupture properties of vulcanizates. Hence, an optimal mixing process does not destroy secondary aggregates. The secondary structure plays an important role in the dispersion of carbon black during mixing as rubber is squeezed into both primary and secondary aggregates. Low structure blacks pack much more tightly than high structure ones and are more difficult to disperse.


2020 ◽  
Vol 299 ◽  
pp. 641-645
Author(s):  
Natalya Gabelchenko ◽  
Artem Belov ◽  
Alena Savchenko

The paper considers the total effect of primary structure parameters on steel mechanical properties depending on the wall thickness of castings. It is shown that during the formation of mechanical properties with an increase in the thickness of the work-piece, the role of the sizes of primary grains decreases and the role of reducing the dispersion of dendritic crystals increases, due to the process of dendritic branches coarsening.


2011 ◽  
Vol 21 (4) ◽  
pp. 729-737 ◽  
Author(s):  
Chengjie Fu ◽  
David Porter ◽  
Xin Chen ◽  
Fritz Vollrath ◽  
Zhengzhong Shao

Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
H.-J. Kleebe ◽  
J.S. Vetrano ◽  
J. Bruley ◽  
M. Rühle

It is expected that silicon nitride based ceramics will be used as high-temperature structural components. Though much progress has been made in both processing techniques and microstructural control, the mechanical properties required have not yet been achieved. It is thought that the high-temperature mechanical properties of Si3N4 are limited largely by the secondary glassy phases present at triple points. These are due to various oxide additives used to promote liquid-phase sintering. Therefore, many attempts have been performed to crystallize these second phase glassy pockets in order to improve high temperature properties. In addition to the glassy or crystallized second phases at triple points a thin amorphous film exists at two-grain junctions. This thin film is found even in silicon nitride formed by hot isostatic pressing (HIPing) without additives. It has been proposed by Clarke that an amorphous film can exist at two-grain junctions with an equilibrium thickness.


Sign in / Sign up

Export Citation Format

Share Document