Improving Water Productivity in Irrigated Agriculture: Challenges from Climate Change and New Water Resources Paradigms

Author(s):  
José Manuel Gonçalves ◽  
Isabel Pedroso de Lima
Author(s):  
Katja Tielbörger ◽  
Aliza Fleischer ◽  
Lucas Menzel ◽  
Johannes Metz ◽  
Marcelo Sternberg

The eastern Mediterranean faces a severe water crisis: water supply decreases due to climate change, while demand increases due to rapid population growth. The GLOWA Jordan River project generates science-based management strategies for maximizing water productivity under global climate change. We use a novel definition of water productivity as the full range of services provided by landscapes per unit blue (surface) and green (in plants and soil) water. Our combined results from climatological, ecological, economic and hydrological studies suggest that, in Israel, certain landscapes provide high returns as ecosystem services for little input of additional blue water. Specifically, cultural services such as recreation may by far exceed that of food production. Interestingly, some highly valued landscapes (e.g. rangeland) appear resistant to climate change, making them an ideal candidate for adaptive land management. Vice versa, expanding irrigated agriculture is unlikely to be sustainable under global climate change. We advocate the inclusion of a large range of ecosystem services into integrated land and water resources management. The focus on cultural services and integration of irrigation demand will lead to entirely different but productive water and land allocation schemes that may be suitable for withstanding the problems caused by climate change.


2012 ◽  
Vol 10 ◽  
pp. 66-72
Author(s):  
Rishi R.S. Neupane

Due to greenhouse gas effect temperature around the world will increase (0.06ºC/yr.) resulting in increased evapo-transpiration and increased need of crop irrigation pressurizing ground water resources and its judicious use. An experiment in a deep tubewell area with improved land and irrigation management undertaken in early 1980’s has shown that doubling of agricultural productivity is possible. This system can be taken as mitigative/adaptive measure of climate change.This paper involves experiences of managing tubewell irrigation schemes through improving basically these development parameters in the irrigation command area: Land improvement (land consolidation, rectangular shaping and leveling), Irrigation canal efficiency improvement,Introduction of crop water management, and Evolving Farmers Group into a Co-operative Organization- for managing land collectively. The evaluation has shown that through this intervention approach yields of paddy, wheat, maize and pulse can be doubled in the irrigated areas. This concept might be useful to modify the present policy and program vision of irrigated agriculture development in Nepal through enhancing water productivity a mitigation measure of the effects of climate change. Also, this approach is applicable to surface irrigation schemes of Terai and hills of Nepal.DOI: http://dx.doi.org/10.3126/hn.v10i0.7117 Hydro Nepal Vol.10 January 2012 66-72


2018 ◽  
Vol 37 ◽  
pp. 03003 ◽  
Author(s):  
Zhour Echakraoui ◽  
Ahmed. Boukdir ◽  
Olaide. Aderoju ◽  
El Hassan Ben – Saïd ◽  
Abdelhamid. Zitouni ◽  
...  

Observations and model results indicate that climate trends in North Africa show both drying and warming over the past few decades, according to the latest Intergovernmental Panel on Climate Change (IPCC) assessment. During the last decades, due to changes in climatic and environmental conditions, water resources available in Morocco are decreasing. They are, moreover, subject to extreme cyclical variations and to soaring water demands because of rapid population growth, improvement of living standards, industrial development and expansion of irrigated agriculture. The pressure on these water resources is accompanied by a growing and increasingly serious degradation of their quality. This is found at the level of average of air temperatures that are continuously growing and at the level of precipitation with an average potential of water in the area with a significant decrease in the last forty years. The purpose of this work is to make a study on the impact of climate change on water resources that exist in the basin of the Oum Er Rbia Central, and to give justifiable results regarding the evolution of climate change over time. From the created database, we brought out diagrams, curves and maps of the evolution of climate change that show the results below: The study of the evolution of rainfall recorded since 1934 and the breaks in time series highlighted two methodologically distinct periods: a wet period with high rainfall (1986 - 1971), a dry season and low rainfall (1970/71 to 2007). Observed climatic trends, calculated over the period of 1935-2007 and reported in the study, indicate the following: On an annual basis, changes in precipitation were not significant and varied from one region to another. On the other hand, spring rainfall declined significantly in the northern part of Morocco at a rate of 0.5 mm / day per decade; That the area experienced an average annual rainfall reduction of 70 mm (20%) over this period compared to 1940-1980. The area is a hydraulic region that is already experiencing a water deficit. The sharp decline in water supplies since 1980-2007 (by 40% compared with 1940- 1980) and the increase in demand and water degradation by different causes; The annual average flows measured at the the central Oum Er Rbia stations were reduced by considerable hydrological deficits ranging between 40.8 and 49.5%. Global warming and rainfall regression are added to the intrinsic conditions of sub basins of the Oum Er Rbia Central (especially waterproofing of land and the lack of groundwater reservoir) to increase its vulnerability to water scarcity. This critical situation requires adapting good management methods of meteorological water as the only source of water in this basin.You should leave 8 mm of space above the abstract and 10 mm after the abstract. The heading Abstract should be typed in bold 9- point Arial. The body of the abstract should be typed in normal 9-point Times in a single paragraph, immediately following the heading. The text should be set to 1 line spacing. The abstract should be centred across the page, indented 17 mm from the left and right page margins and justified. It should not normally exceed 200 words.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1167
Author(s):  
Marieme Seif-Ennasr ◽  
Lhoussaine Bouchaou ◽  
Zine El Abidine El Morjani ◽  
Abdelaziz Hirich ◽  
El Hassane Beraaouz ◽  
...  

Agriculture plays a crucial role in the economic development in Morocco, contributing to 14% of the national gross domestic product. However, this sector is facing various challenges, including climate change. This study aims to assess relevant indicators that may affect land suitability, water demand, and crop growing season duration under climate change. Further, it may be used as a decision support tool in the Chtouka area known for its irrigated agriculture. The approach proposed, the spatial distribution of land based on suitability, is founded on the multiple-criteria decision-making method of four parameters; soil texture, temperature, land use, and slope. The duration of the length of crop season was simulated using the concept of growing degree days. The projection of land suitability for 2031–2050 indicated an important decrease of 12.11% of “highly suitable” agricultural land under the RCP4.5 emission scenario and a significant increase of 4.68% of “highly unsuitable” land, according to the RCP8.5 emission scenario compared to the baseline (1985–2005). The projected growing degree days in 2031–2050 showed a strong shortening in the growing period length compared to the baseline 1985–2006, mainly under the RCP8.5 emission scenario, with a reduction from 8% to 21% depending on crops. Moreover, crop water productivity indicated that berries were over 50% less water productive than other vegetable crops for almost the same amount of applied irrigation water. These findings highlight the vulnerability of agriculture to climate change, which requires important political and management efforts to sustain agricultural activity.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1230 ◽  
Author(s):  
Maria do Rosário Cameira ◽  
Luís Santos Pereira

The main challenge faced by agriculture is to produce enough food for a continued increase in population, however in the context of ever-growing competition for water and land, climate change, droughts and anthropic water scarcity, and less-participatory water governance. Such a context implies innovative issues in agricultural water management and practices, at both the field and the system or the basin scales, mainly in irrigation to cope with water scarcity, environmental friendliness, and rural society welfare. Therefore, this special issue was set to present and discuss recent achievements in water, agriculture, and food nexus at different scales, thus to promote sustainable development of irrigated agriculture and to develop integrated approaches to water and food. Papers cover various domains including: (a) evapotranspiration and crop water use; (b) improving water management in irrigated agriculture, particularly irrigation scheduling; (c) adaptation of agricultural systems to enhance water use and water productivity to face water scarcity and climate change; (d) improving irrigation systems design and management adopting multi-criteria and risk approaches; (e) ensuring sustainable management for anthropic ecosystems favoring safe and high-quality food production, as well as the conservation of natural ecosystems; (f) assessing the impact of water scarcity and, mainly, droughts; (g) conservation of water quality resources, namely by preventing contamination with nitrates; (h) use of modern mapping technologies and remote sensing information; and (i) fostering a participative and inclusive governance of water for food security and population welfare.


2020 ◽  
Author(s):  
Claudia Teutsch ◽  
Faizan Anwar ◽  
Jochen Seidel ◽  
András Bárdossy ◽  
Christian Huggel ◽  
...  

<p>High mountain regions, like the Andes, face various risks due to climate change. In the Santa River catchment in Peru which includes the glaciated Cordillera Blanca, water availability is threatened by many climatic and non-climatic impacts. The water resources in the catchment heavily rely on seasonal precipitation and during the dry season glacier melt water plays an important role. However, both, precipitation patterns and glacier extent are affected by climate change impacts. Additionally, socio-economic changes put further pressure on water resources and hence on water availability.</p> <p>Within the AguaFuturo Project we established a conceptual integrated water balance model based on a semi-distributed HBV model for the data scarce Santa River catchment. The hydrological model processes are extended by feedback loops for agricultural and domestic water use. The model runs on daily time scale and includes two hydrological response units. One includes the irrigated agricultural areas which are predominately located in the valley of the catchment; the other includes non-irrigated areas and domestic water use.</p> <p>To assess future water balance challenges we downscaled and disaggregated monthly CORDEX scenarios for 2020-2050 using information from the new Peruvian precipitation dataset PISCO (Peruvian Interpolated data of the SENAMHI’s Climatological and hydrological Observations) for simulations of future changes in hydro-climatology. In the model, these climate scenarios are combined with possible socio-economic scenarios which are translated into time series for domestic and agricultural water demand. The socio-economic scenarios are developed by using the Cross-Impact-Balance-Analysis (CIB), a method used for analyzing impact networks. Using CIB, the interrelations between 15 social, economic and policy descriptors were analyzed and as a result a total of 29 possible consistent scenarios were determined. For further analysis and validation of these scenarios a participatory process was included, involving local experts and stakeholders of the study region.</p> <p>The climate and socio-economic scenarios are independent and can be combined randomly. The uncertainties of the climatic and socio-economic scenarios are quantified by Monte Carlo simulations.</p> <p>The output of the model runs is an ensemble of possible future discharges of the Santa River, which can be further analyzed statistically to assess the range of the possible discharges. This evaluation provides an estimate of the probability of water shortages, especially with regard to conflict potential with hydropower production and the large scale irrigated agriculture areas in the adjacent coastal desert which also rely on water from the Santa River.</p>


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1120 ◽  
Author(s):  
Georgios Nikolaou ◽  
Damianos Neocleous ◽  
Anastasis Christou ◽  
Evangelini Kitta ◽  
Nikolaos Katsoulas

The sustainability of irrigated agriculture is threatening due to adverse climate change, given future projections that every one in four people on Earth might be suffering from extreme water scarcity by the year 2025. Pressurized irrigation systems and appropriate irrigation schedules can increase water productivity (i.e., product yield per unit volume of water consumed by the crop) and reduce the evaporative or system loss of water as opposed to traditional surface irrigation methods. However, in water-scarce countries, irrigation management frequently becomes a complex task. Deficit irrigation and the use of non-conventional water resources (e.g., wastewater, brackish groundwater) has been adopted in many cases as part of a climate change mitigation measures to tackle the water poverty issue. Protected cultivation systems such as greenhouses or screenhouses equipped with artificial intelligence systems present another sustainable option for improving water productivity and may help to alleviate water scarcity in these countries. This article presents a comprehensive review of the literature, which deals with sustainable irrigation for open-field and protected cultivation systems under the impact of climatic change in vulnerable areas, including the Mediterranean region.


2013 ◽  
Vol 17 (7) ◽  
pp. 2473-2486 ◽  
Author(s):  
P. Karimi ◽  
W. G. M. Bastiaanssen ◽  
D. Molden ◽  
M. J. M. Cheema

Abstract. The paper demonstrates the application of a new water accounting plus (WA+) framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in addition to measured basin outflow, for water accounting with WA+. It is demonstrated how the accounting results can be interpreted to identify existing issues and examine solutions for the future. The results for one selected year (2007) showed that total annual water depletion in the basin (501 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The water storage systems that were effected are groundwater storage (30 km3), surface water storage (9 km3), and glaciers and snow storage (2 km3). Evapotranspiration of rainfall or "landscape ET" was 344 km3 (69 % of total depletion). "Incremental ET" due to utilized flow was 157 km3 (31% of total depletion). Agriculture depleted 297 km3, or 59% of the total depletion, of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. Due to excessive soil evaporation in agricultural areas, half of all water depletion in the basin was non-beneficial. Based on the results of this accounting exercise loss of storage, low beneficial depletion, and low land and water productivity were identified as the main water resources management issues. Future scenarios to address these issues were chosen and their impacts on the Indus Basin water accounts were tested using the new WA+ framework.


2021 ◽  
Vol 13 (3) ◽  
pp. 1504
Author(s):  
Koffi Djaman ◽  
Suat Irmak ◽  
Komlan Koudahe ◽  
Samuel Allen

Limited water resources coupled with the increase of the human population calls for more efficient use of water in irrigated agriculture. Potato (Solanum tuberosum L.) is one of the most widely grown crops worldwide and is very sensitive to water stress due to its shallow rooting system. With the dilemma of potato sensitivity to drought and limited available water resources restricting crop production, researchers and crop growers have been investigating different approaches for optimizing potato yield and improving crop water use efficiency under different irrigation methods. While potato response to water is affected by other management practices such as fertilizer management, the present review is focused on the potato response to water under different environments and different irrigation methods and the impact on potato quality and potato diseases. Variable results obtained from research studies indicate the non-transferability of the results from one location to another as potato cultivars are not the same and potato breeders are still making effort to develop new high-yielding varieties to increase crop production and or develop new varieties for a specific trait to satisfy consumers exigence. This review is a valuable source of information for potato growers and scientists as it is not only focused on the impact of irrigation regimes on potato yield and water productivity as most reviews on water management, but it also presents the impact of irrigation regime on diseases in potatoes, tuber specific gravity, metabolite content of the tubers and the quality of the processed potato products.


Author(s):  
Muhammad Saeed ◽  
Ahsan Maqbool ◽  
Muhammad Adnan Ashraf ◽  
Muhammad Arshad ◽  
Kashif Mehmood ◽  
...  

Abstract Irrigated agriculture is a foremost consumer of water resources to fulfill the demand for food and fiber with an increasing population under climate changes; cotton is no exception. Depleting groundwater recharge and water productivity is critical for the sustainable cotton crop yield peculiarly in the semiarid region. This study investigated the water productivity and cotton yield under six different treatments: three sowing methods, i.e., flat, ridge, and bed planting with and without plastic mulch. Cotton bed planting without mulch showed maximum water productivity (0.24 kg.m−3) and the highest cotton yield (1946 kg.ha−1). Plastic mulching may reduce water productivity and cotton yield. HYDRUS-1D unsaturated flow model was used to access the groundwater recharge for 150 days under six treatments after model performance evaluation. Maximum cumulative recharge was observed 71 cm for the flat sowing method without plastic mulch. CanESM2 was used to predict climate scenarios for RCP 2.6, 4.5, and 8.5 for the 2050s and 2080s by statistical downscale modeling (SDSM) using historical data from 1975 to 2005 to access future groundwater recharge flux. Average cumulative recharge flux declined 36.53% in 2050 and 22.91% in 2080 compared to 2017 without plastic mulch. Multivariate regression analysis revealed that a maximum 23.78% reduction in groundwater recharge could influence future climate change. Further study may require to understand the remaining influencing factor of depleting groundwater recharge. Findings highlight the significance of climate change and the cotton sowing method while accessing future groundwater resources in irrigated agriculture.


Sign in / Sign up

Export Citation Format

Share Document