Adaptation Mechanism of Methylotrophic Bacteria to Drought Condition and Its Strategies in Mitigating Plant Stress Caused by Climate Change

Author(s):  
R. Krishnamoorthy ◽  
R. Anandham ◽  
M. Senthilkumar ◽  
V. Venkatramanan
2021 ◽  
Vol 22 (3) ◽  
pp. 1357
Author(s):  
Ewelina A. Klupczyńska ◽  
Tomasz A. Pawłowski

Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.


Climate ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 92
Author(s):  
Tewodros R. Godebo ◽  
Marc A. Jeuland ◽  
Christopher J. Paul ◽  
Dagnachew L. Belachew ◽  
Peter G. McCornick

This work aims to assess water quality for irrigated agriculture, alongside perceptions and adaptations of farmers to climate change in the Main Ethiopian Rift (MER). Climate change is expected to cause a rise in temperature and variability in rainfall in the region, reducing surface water availability and raising dependence on groundwater. The study data come from surveys with 147 farmers living in the Ziway–Shala basin and water quality assessments of 162 samples from groundwater wells and surface water. Most groundwater samples were found to be unsuitable for long term agricultural use due to their high salinity and sodium adsorption ratio, which has implications for soil permeability, as well as elevated bicarbonate, boron and residual sodium carbonate concentrations. The survey data indicate that water sufficiency is a major concern for farmers that leads to frequent crop failures, especially due to erratic and insufficient rainfall. An important adaptation mechanism for farmers is the use of improved crop varieties, but major barriers to adaptation include a lack of access to irrigation water, credit or savings, appropriate seeds, and knowledge or information on weather and climate conditions. Local (development) agents are identified as vital to enhancing farmers’ knowledge of risks and solutions, and extension programs must therefore continue to promote resilience and adaptation in the area. Unfortunately, much of the MER groundwater that could be used to cope with declining viability of rainfed agriculture and surface water availability, is poor in quality. The use of saline groundwater could jeopardize the agricultural sector, and most notably commercial horticulture and floriculture activities. This study highlights the complex nexus of water quality and sufficiency challenges facing the agriculture sector in the region, and should help decision-makers to design feasible strategies for enhancing adaptation and food security.


1992 ◽  
Vol 68 (4) ◽  
pp. 462-471 ◽  
Author(s):  
Mark W. Schwartz

Climatologists have observed a consistent increase in atmospheric CO2 over the past 30 years. It is predicted that CO2 levels could double the pre-industrial level of 280 ppm by the year 2100, perphaps much earlier. Climate models of doubled atmospheric CO2 predict that mean temperatures will increase between 1.5 and 4.5 °C globally; these temperature changes will be greater at high latitudes. Mid-continental regions will experience lower rainfall. Predictions of species northward range shifts in response to climate change vary from 100 km to over 500 km. Historical evidence of species range movements following the Pleistocene indicate that tree species typically migrated at rates of 10 km to 40 km per century. A simulation model that predicts the migration response of trees through modern fragmented landscapes predicts migration rates much lower than Pleistocene observations. Thus migration response is likely to lag far behind rates of climatic change, potentially threatening narrowly distributed species whose predicted future ranges do not overlap with their current range. Insect pests and microbial pathogens should respond to climatic warming faster than long-lived trees. Predicted increased drought frequency may increase plant stress and thereby increase the frequency of insect outbreaks and disease. Predictions of species responses are complicated by direct effects of increased CO2, such as increased water-use efficiency. However, response to elevated CO2 varies among species. Thus, shifts in composition within plant communities are also likely, but are, as yet, unpredictable.


2020 ◽  
Vol 228 (3) ◽  
pp. 823-827
Author(s):  
Ashwani Pareek ◽  
Rohit Joshi ◽  
Kapuganti Jagadis Gupta ◽  
Sneh L. Singla‐Pareek ◽  
Christine Foyer

2020 ◽  
Vol 11 ◽  
Author(s):  
Ana L. García-García ◽  
Francisco J. García-Machado ◽  
Andrés A. Borges ◽  
Sarai Morales-Sierra ◽  
Alicia Boto ◽  
...  

Biostimulants (BSs) are probably one of the most promising alternatives nowadays to cope with yield losses caused by plant stress, which are intensified by climate change. Biostimulants comprise many different compounds with positive effects on plants, excluding pesticides and chemical fertilisers. Usually mixtures such as lixiviates from proteins or algal extracts have been used, but currently companies are interested in more specific compounds that are capable of increasing tolerance against abiotic stress. Individual application of a pure active compound offers researchers the opportunity to better standarise formulations, learn more about the plant defence process itself and assist the agrochemical industry in the development of new products. This review attempts to summarise the state of the art regarding various families of organic compounds and their mode/mechanism of action as BSs, and how they can help maximise agricultural yields under stress conditions aggravated by climate change.


2021 ◽  
Author(s):  
Ditte Taipale ◽  
Veli-Matti Kerminen ◽  
Mikael Ehn ◽  
Markku Kulmala ◽  
Ülo Niinemets

Abstract. Most trees emit volatile organic compounds (VOCs) continuously throughout their life, but the rate of emission, and spectrum of emitted VOCs, become substantially altered when the trees experience stress. Still, models to predict the emissions of VOCs do not account for perturbations caused by biotic plant stress. Considering that such stresses have generally been forecast to increase in both frequency and severity in future climate, the neglect of plant stress-induced emissions in models might be one of the key obstacles for realistic climate change predictions, since changes in VOC concentrations are known to greatly influence atmospheric aerosol processes. Thus, we constructed a model to study the impact of biotic plant stresses on new particle formation and growth throughout a full growing season. We simulated the influence on aerosol processes caused by herbivory by European gypsy moth (Lymantria dispar) and autumnal moth (Epirrita autumnata) feeding on pedunculate oak (Quercus robur) and mountain birch (Betula pubescens var. pumila), respectively, and also fungal infections of pedunculate oak and balsam poplar (Populus balsamifera var. suaveolens) by oak powdery mildew (Erysiphe alphitoides) and poplar rust (Melampsora larici-populina), respectively. Our modelling results indicate that all the investigated plant stresses are capable of substantially perturbing both the number and size of aerosol particles in atmospherically relevant conditions, with increases in the amount of newly formed particles by up to about one order of magnitude and additional daily growth of up to almost 50 nm. We also showed that it can be more important to account for biotic plant stresses in models than significant variations in e.g. leaf area index, and temperature and light conditions, which are currently the main parameters controlling predictions of VOC emissions. Our study, thus, demonstrates that biotic plant stress can be highly atmospherically relevant and it supports biotic plant stress emissions to be integrated into numerical models for prediction of atmospheric chemistry and physics, including climate change projection models.


2018 ◽  
Author(s):  
Khaled Moustafa

The need to develop solutions to the problem of worldwide food crop scarcity under exacerbated climate change will be paramount. This motivates an effort to leverage agricultural biotechnology to improve plant adaptation to severe and multiple, simultaneous environmental stresses. Consequently, engineering synthetic signaling pathways, particularly mitogen activated protein kinase (MAPK) cascades utilizing components already involved in plant stress tolerance, is a worthy focus for research to breed new plant varieties with enhanced stress-tolerance traits.


2020 ◽  
Vol 107 ◽  
pp. 1-4
Author(s):  
Kathiresan s ◽  
◽  
Raj Pravin T ◽  

Climate change issues are affecting the lives and livelihoods of the farming community in our state. With majority of our rural population dependent on farming, the need of the hour is to create awareness among farmers on climate-resilient farm technologies and make them adopt them. So, a study was conducted in the Erumapatty block of Namakkal district of Tamil Nadu to study the awareness and adoption of climate-resilient farm technologies. The findings of this study revealed that majority of the respondents (68.33 per cent) had high level of awareness on climate-resilient farm technologies. With regard to adoption, majority (60.00 per cent) had medium level of adoption on climate-resilient farm technologies. On crop production and protection climate resilient farm technologies, namely drought-resilient varieties, Intercropping, Identification and use of short-duration varieties, drought-resilient fodder crops, Community nursery as a contingency measure for delayed planting, IPDM and PPFM to combat drought condition in small onion majority of the farmers in the study area are aware of it and adopt it in this study area.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 558
Author(s):  
J. William Allwood ◽  
Alex Williams ◽  
Henriette Uthe ◽  
Nicole M. van Dam ◽  
Luis A. J. Mur ◽  
...  

Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant–insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant–insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance.


Sign in / Sign up

Export Citation Format

Share Document