Dependence of gear-pump operation on viscosity of the metered liquid

1990 ◽  
Vol 21 (6) ◽  
pp. 453-455
Author(s):  
V. I. Stupa ◽  
Yu. A. Chernyshov
Keyword(s):  
Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2186 ◽  
Author(s):  
Nicola Casari ◽  
Ettore Fadiga ◽  
Michele Pinelli ◽  
Saverio Randi ◽  
Alessio Suman

Micro-ORC systems are usually equipped with positive displacement machines such as expanders and pumps. The pumping system has to guarantee the mass flow rate and allows a pressure rise from the condensation to the evaporation pressure values. In addition, the pumping system supplies the organic fluid, characterized by pressure and temperature very close to the saturation. In this work, a CFD approach is developed to analyze from a novel point of view the behavior of the pumping system of a regenerative lab-scale micro-ORC system. In fact, starting from the liquid receiver, the entire flow path, up to the inlet section of the evaporator, has been numerically simulated (including the Coriolis flow meter installed between the receiver and the gear pump). A fluid dynamic analysis has been carried out by means of a transient simulation with a mesh morphing strategy in order to analyze the transient phenomena and the effects of pump operation. The analysis has shown how the accuracy of the mass flow rate measurement could be affected by the pump operation being installed in the same circuit branch. In addition, the results have shown how the cavitation phenomenon affects the pump and the ORC system operation compared to control system actions.


2017 ◽  
Vol 24 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Wacław Kollek ◽  
Piotr Osiński ◽  
Urszula Warzyńska

Abstract The paper presents the results of numerical calculations of stress distributions in the gear micropump body for applications in hydraulic systems, especially in the marine sector. The scope of the study was to determine the most favorable position of bushings and pumping unit in the gear pump body in terms of stress and displacement distribution in the pump housing. Fourteen cases of gear pump bushings and pumping unit locations were analyzed: starting from the symmetrical position relative to the central axis of the pump, up to a position shifted by 2.6 mm towards the suction channel of the pump. The analysis of the obtained calculation results has shown that the most favorable conditions for pump operation are met when the bushings are shifted by 2.2 mm towards the suction channel. In this case the maximal stress was equal to 109 MPa, while the highest displacement was about 15μm. Strength and stiffness criteria in the modernized pump body were satisfied.


Author(s):  
Emiliano Mucchi ◽  
Valerio Venturi ◽  
Giorgio Dalpiaz

In this work a hybrid lumped-parameter finite-element model of an external gear pump for automotive applications is presented and experimentally assessed; the finite element (FE) model regards the external parts of the pump (case and end plates) while the lumped-parameter (LP) model regards the interior parts (bushes and gears). The LP model is a non linear kineto-elastodynamic model and includes the most important phenomena involved in the pump operation as time-varying oil pressure distribution on gears, time-varying meshing stiffness and hydrodynamic journal bearing reactions. A forced vibration analysis has been carried out by means of the FE model for the evaluation of the acceleration levels on the external surfaces of the pump; for this analysis, the damping has been estimated using data coming from an experimental modal analysis (EMA) whereas the excitation forces, acting on the internal surface of the case due to bearing reactions and pressure forces, have been obtained from the LP model. In this sense the model is globally a hybrid LP/FE model. The model has been assessed using experiments: the experimental accelerations measured during run-up tests have been compared with the simulated accelerations coming from the FE/LP model. Finally the assessed model has been used in order to identify the effects of design parameters in terms of case vibrations.


Author(s):  
Vitaliy A. Zuyevskiy ◽  
Daniil O. Klimyuk ◽  
Ivan A. Shemberev

Gear pumps are an important element of many production systems and their replacement in case of failure can be quite expensive, so it is important to have a modern and well-tuned technology for their recovery. There are many methods for restoring the pump's performance, depending on the reason that led to its failure. (Research purpose) The research purpose is in determining what causes most often lead to loss of pump performance, and developing a recovery method that provides the greatest post-repair service life of the pump and low cost of repair. (Materials and methods) Authors took into account that the applied coatings must have sufficient adhesion strength and resistance to mechanical, thermal and corrosion loads during operation. It was found that most often significant leaks of the working fluid, leading to failure, occur due to an increase in the gap between the inner surface of the housing and the gears due to active wear of the housing wells. Authors determined that the method of electric spark treatment of worn-out housing wells is best suited to perform the task (a large post-repair resource and low costs). (Results and discussion) It was found by laboratory studies of the adhesion strength of electric spark coatings with various electrodes that the best transfer of the material to the substrate is provided by bronze electrodes BrMKts3-1. It was noted that the coatings applied using the BrMKts3-1 electrode have high strength properties. (Conclusions) Research conducted in the center for collective use "Nano-Center" VIM confirmed the possibility of effective recovery of the gear pump by electric spark treatment.


2001 ◽  
Vol 66 (8) ◽  
pp. 1299-1314 ◽  
Author(s):  
Michal Lebl ◽  
Christine Burger ◽  
Brett Ellman ◽  
David Heiner ◽  
Georges Ibrahim ◽  
...  

Design and construction of automated synthesizers using the tilted plate centrifugation technology is described. Wash solutions and reagents common to all synthesized species are delivered automatically through a 96-channel distributor connected to a gear pump through two four-port selector valves. Building blocks and other specific reagents are delivered automatically through banks of solenoid valves, positioned over the individual wells of the microtiterplate. These instruments have the following capabilities: Parallel solid-phase oligonucleotide synthesis in the wells of polypropylene microtiter plates, which are slightly tilted down towards the center of rotation, thus generating a pocket in each well, in which the solid support is collected during centrifugation, while the liquid is expelled from the wells. Eight microtiterplates are processed simultaneously, providing thus a synthesizer with a capacity of 768 parallel syntheses. The instruments are capable of unattended continuous operation, providing thus a capacity of over two millions 20-mer oligonucleotides in a year.


2021 ◽  
Vol 13 (6) ◽  
pp. 3089
Author(s):  
Miquel Torrent ◽  
Pedro Javier Gamez-Montero ◽  
Esteban Codina

This article presents a methodology for predicting the fluid dynamic behavior of a gear pump over its operating range. Complete pump parameterization was carried out through standard tests, and these parameters were used to create a bond graph model to simulate the behavior of the unit. This model was experimentally validated under working conditions in field tests. To carry this out, the pump was used to drive the auxiliary movements of a drilling machine, and the experimental data were compared with a simulation of the volumetric behavior under the same conditions. This paper aims to describe a method for characterizing any hydrostatic pump as a “black box” model predicting its behavior in any operating condition. The novelty of this method is based on the correspondence between the variation of the parameters and the internal changes of the unit when working in real conditions, that is, outside a test bench.


Author(s):  
Lauren R. Kennedy-Metz ◽  
Roger D. Dias ◽  
Rithy Srey ◽  
Geoffrey C. Rance ◽  
Heather M. Conboy ◽  
...  

Objective This novel preliminary study sought to capture dynamic changes in heart rate variability (HRV) as a proxy for cognitive workload among perfusionists while operating the cardiopulmonary bypass (CPB) pump during real-life cardiac surgery. Background Estimations of operators’ cognitive workload states in naturalistic settings have been derived using noninvasive psychophysiological measures. Effective CPB pump operation by perfusionists is critical in maintaining the patient’s homeostasis during open-heart surgery. Investigation into dynamic cognitive workload fluctuations, and their relationship with performance, is lacking in the literature. Method HRV and self-reported cognitive workload were collected from three Board-certified cardiac perfusionists ( N = 23 cases). Five HRV components were analyzed in consecutive nonoverlapping 1-min windows from skin incision through sternal closure. Cases were annotated according to predetermined phases: prebypass, three phases during bypass, and postbypass. Values from all 1min time windows within each phase were averaged. Results Cognitive workload was at its highest during the time between initiating bypass and clamping the aorta (preclamp phase during bypass), and decreased over the course of the bypass period. Conclusion We identified dynamic, temporal fluctuations in HRV among perfusionists during cardiac surgery corresponding to subjective reports of cognitive workload. Not only does cognitive workload differ for perfusionists during bypass compared with pre- and postbypass phases, but differences in HRV were also detected within the three bypass phases. Application These preliminary findings suggest the preclamp phase of CPB pump interaction corresponds to higher cognitive workload, which may point to an area warranting further exploration using passive measurement.


2021 ◽  
Vol 13 (13) ◽  
pp. 7320
Author(s):  
Tobias Pietrzyk ◽  
Markus Georgi ◽  
Sabine Schlittmeier ◽  
Katharina Schmitz

In this study, sound measurements of an axial piston pump and an internal gear pump were performed and subjective pleasantness judgements were collected in listening tests (to analyze the subjective pleasantness), which could be seen as the inverse of the subjective annoyance of hydraulic drives. Pumps are the dominant sound source in hydraulic systems. The noise generation of displacement machines is subject of current research. However, in this research only the sound pressure level (SPL) was considered. Psychoacoustic metrics give new possibilities to analyze the sound of hydraulic drive technology and to improve the sound quality. For this purpose, instrumental measurements of the acoustic and psychoacoustic parameters are evaluated for both pump types. The recorded sounds are played back to the participants in listening tests. Participants evaluate them regarding the subjective pleasantness by means of paired comparison, which is an indirect scaling method. The dependence of the subjective pleasantness on speed and pressure was analyzed for both pump types. Different regression analyses were carried out to predict the subjectively perceived pleasantness or annoyance of the pumps. Results show that a lower speed is the decisive operating parameter for reducing both the SPL and the annoyance of a hydraulic pump.


2013 ◽  
Vol 15 (4) ◽  
pp. 1203-1223 ◽  
Author(s):  
Eyal Price ◽  
Avi Ostfeld

Linear water balance optimal operation models are common with relative short solution times but suffer from a lack of certainty whether the given solution is at all hydraulically feasible. Introducing hydraulic headloss, water leakage and changing pump energy consumption, effect the resulting system optimal operation but also create a non-linear problem due to the convex relation between flow, headloss, water leakage and total head. This study utilizes a methodology published by the authors for linearization of convex or concave equations. An iterative linear programming (LP) minimal cost optimal operation supply model is solved including the Hazen–Williams headloss equation, pressure related water leakage equation, changing pump energy consumption and source cost. The model is demonstrated using an example application. ‘Greater than’ or ‘less than’ water head constraints at nodes may force the system to maintain certain water levels in water tanks reducing the available operating volume forcing pumping stations to operate in peak tariff periods as less storage is available in low tariff periods. Operationally, reducing water leakage may be achieved by reducing water heads along the system by means of shifting pump operation periods and maintaining low water levels in water tanks. Source costs may serve as penalties or rewards discouraging or encouraging the use of certain water sources.


Sign in / Sign up

Export Citation Format

Share Document