scholarly journals Profiling of bacterial bloodstream infections in hematological and oncological patients based on a comparative survival analysis

Author(s):  
Sarah Weber ◽  
Aaron Magh ◽  
Michael Hogardt ◽  
Volkhard A. J. Kempf ◽  
Maria J. G. T. Vehreschild ◽  
...  

AbstractBloodstream infections (BSI) are a frequent complication in patients with hematological and oncological diseases. However, the impact of different bacterial species causing BSI and of multiple BSI remains incompletely understood. We performed a retrospective study profiling 637 bacterial BSI episodes in hematological and oncological patients. Based on the 30-day (30d) overall survival (OS), we analyzed different types of multiple BSI and grouped BSI-associated bacteria into clusters followed by further assessment of clinical and infection-related characteristics. We discovered that polymicrobial BSI (different organisms on the first day of a BSI episode) and sequential BSI (another BSI before the respective BSI episode) were associated with a worse 30d OS. Different bacterial groups could be classified into three BSI outcome clusters based on 30d OS: favorable (FAV) including mainly common skin contaminants, Escherichia spp. and Streptococcus spp.; intermediate (INT) including mainly Enterococcus spp., vancomycin-resistant Enterococcus spp., and multidrug-resistant gram-negative bacteria (MDRGN); and adverse (ADV) including MDRGN with an additional carbapenem-resistance (MDRGN+CR). A polymicrobial or sequential BSI especially influenced the outcome in the combination of two INT cluster BSI. The presence of a polymicrobial BSI and the assignment into the BSI outcome clusters were identified as independent risk factors for 30d mortality in a Cox multivariate regression analysis. The assignment to a BSI outcome cluster and the differentiated perspective of multiple BSI open new insights into the prognosis of patients with BSI and should be further validated in other patient cohorts.

Author(s):  
Mariana Chumbita ◽  
Pedro Puerta-Alcalde ◽  
Carlota Gudiol ◽  
Nicole Garcia-Pouton ◽  
Júlia Laporte-Amargós ◽  
...  

Objectives: We analyzed risk factors for mortality in febrile neutropenic patients with bloodstream infections (BSI) presenting with septic shock and assessed the impact of empirical antibiotic regimens. Methods: Multicenter retrospective study (2010-2019) of two prospective cohorts comparing BSI episodes in patients with or without septic shock. Multivariate analysis was performed to identify independent risk factors for mortality in episodes with septic shock. Results: Of 1563 patients with BSI, 257 (16%) presented with septic shock. Those patients with septic shock had higher mortality than those without septic shock (55% vs 15%, p<0.001). Gram-negative bacilli caused 81% of episodes with septic shock; gram-positive cocci, 22%; and Candida species 5%. Inappropriate empirical antibiotic treatment (IEAT) was administered in 17.5% of septic shock episodes. Empirical β-lactam combined with other active antibiotics was associated with the lowest mortality observed. When amikacin was the only active antibiotic, mortality was 90%. Addition of empirical specific gram-positive coverage had no impact on mortality. Mortality was higher when IEAT was administered (76% vs 51%, p=0.002). Age >70 years (OR 2.3, 95% CI 1.2-4.7), IEAT for Candida spp. or gram-negative bacilli (OR 3.8, 1.3-11.1), acute kidney injury (OR 2.6, 1.4-4.9) and amikacin as the only active antibiotic (OR 15.2, 1.7-134.5) were independent risk factors for mortality, while combination of β-lactam and amikacin was protective (OR 0.32, 0.18-0.57). Conclusions: Septic shock in febrile neutropenic patients with BSI is associated with extremely high mortality, especially when IEAT is administered. Combination therapy including an active β-lactam and amikacin results in the best outcomes.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 816
Author(s):  
Ana Guisado-Gil ◽  
Carmen Infante-Domínguez ◽  
Germán Peñalva ◽  
Julia Praena ◽  
Cristina Roca ◽  
...  

During the COVID-19 pandemic, the implementation of antimicrobial stewardship strategies has been recommended. This study aimed to assess the impact of the COVID-19 pandemic in a tertiary care Spanish hospital with an active ongoing antimicrobial stewardship programme (ASP). For a 20-week period, we weekly assessed antimicrobial consumption, incidence density, and crude death rate per 1000 occupied bed days of candidemia and multidrug-resistant (MDR) bacterial bloodstream infections (BSI). We conducted a segmented regression analysis of time series. Antimicrobial consumption increased +3.5% per week (p = 0.016) for six weeks after the national lockdown, followed by a sustained weekly reduction of −6.4% (p = 0.001). The global trend for the whole period was stable. The frequency of empirical treatment of patients with COVID-19 was 33.7%. No change in the global trend of incidence of hospital-acquired candidemia and MDR bacterial BSI was observed (+0.5% weekly; p = 0.816), nor differences in 14 and 30-day crude death rates (p = 0.653 and p = 0.732, respectively). Our work provides quantitative data about the pandemic effect on antimicrobial consumption and clinical outcomes in a centre with an active ongoing institutional and education-based ASP. However, assessing the long-term impact of the COVID-19 pandemic on antimicrobial resistance is required.


Author(s):  
Enea Gino Di Domenico ◽  
Ilaria Cavallo ◽  
Francesca Sivori ◽  
Francesco Marchesi ◽  
Grazia Prignano ◽  
...  

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a prominent cause of nosocomial infections associated with high rates of morbidity and mortality, particularly in oncological patients. The hypermucoviscous (HMV) phenotype and biofilm production are key factors for CRKP colonization and persistence in the host. This study aims at exploring the impact of CRKP virulence factors on morbidity and mortality in oncological patients. A total of 86 CRKP were collected between January 2015 and December 2019. Carbapenem resistance-associated genes, antibiotic susceptibility, the HMV phenotype, and biofilm production were evaluated. The median age of the patients was 71 years (range 40–96 years). Clinically infected patients were 53 (61.6%), while CRKP colonized individuals were 33 (38.4%). The most common infectious manifestations were sepsis (43.4%) and pneumonia (18.9%), while rectal surveillance swabs were the most common site of CRKP isolation (81.8%) in colonized patients. The leading mechanism of carbapenem resistance was sustained by the KPC gene (96.5%), followed by OXA-48 (2.3%) and VIM (1.2%). Phenotypic CRKP characterization indicated that 55.8% of the isolates were strong biofilm-producers equally distributed between infected (54.2%) and colonized (45.8%) patients. The HMV phenotype was found in 22.1% of the isolates, which showed a significant (P&lt;0.0001) decrease in biofilm production as compared to non-HMV strains. The overall mortality rate calculated on the group of infected patients was 35.8%. In univariate analysis, pneumoniae significantly correlated with death (OR 5.09; CI 95% 1.08–24.02; P=0.04). The non-HMV phenotype (OR 4.67; CI 95% 1.13–19.24; P=0.03) and strong biofilm-producing strains (OR 5.04; CI95% 1.39–18.25; P=0.01) were also associated with increased CRKP infection-related mortality. Notably, the multivariate analysis showed that infection with strong biofilm-producing CRKP was an independent predictor of mortality (OR 6.30; CI 95% 1.392–18.248; P=0.004). CRKP infection presents a high risk of death among oncological patients, particularly when pneumoniae and sepsis are present. In infected patients, the presence of strong biofilm-producing CRKP significantly increases the risk of death. Thus, the assessment of biofilm production may provide a key element in supporting the clinical management of high-risk oncological patients with CRKP infection.


2006 ◽  
Vol 50 (12) ◽  
pp. 4114-4123 ◽  
Author(s):  
Kristine M. Hujer ◽  
Andrea M. Hujer ◽  
Edward A. Hulten ◽  
Saralee Bajaksouzian ◽  
Jennifer M. Adams ◽  
...  

ABSTRACT Military medical facilities treating patients injured in Iraq and Afghanistan have identified a large number of multidrug-resistant (MDR) Acinetobacter baumannii isolates. In order to anticipate the impact of these pathogens on patient care, we analyzed the antibiotic resistance genes responsible for the MDR phenotype in Acinetobacter sp. isolates collected from patients at the Walter Reed Army Medical Center (WRAMC). Susceptibility testing, PCR amplification of the genetic determinants of resistance, and clonality were determined. Seventy-five unique patient isolates were included in this study: 53% were from bloodstream infections, 89% were resistant to at least three classes of antibiotics, and 15% were resistant to all nine antibiotics tested. Thirty-seven percent of the isolates were recovered from patients nosocomially infected or colonized at the WRAMC. Sixteen unique resistance genes or gene families and four mobile genetic elements were detected. In addition, this is the first report of bla OXA-58-like and bla PER-like genes in the U.S. MDR A. baumannii isolates with at least eight identified resistance determinants were recovered from 49 of the 75 patients. Molecular typing revealed multiple clones, with eight major clonal types being nosocomially acquired and with more than 60% of the isolates being related to three pan-European types. This report gives a “snapshot” of the complex genetic background responsible for antimicrobial resistance in Acinetobacter spp. from the WRAMC. Identifying genes associated with the MDR phenotype and defining patterns of transmission serve as a starting point for devising strategies to limit the clinical impact of these serious infections.


2019 ◽  
Vol 6 ◽  
pp. 204993611989357
Author(s):  
Patricia Jiménez-Aguilar ◽  
Luis Eduardo López-Cortés ◽  
Jesús Rodríguez-Baño

Bacteraemia or bloodstream infections (BSI) are associated with much morbidity and mortality. Management of patients with bacteraemia is complex, and the increase in immunosuppressed patients and multidrug-resistant organisms poses additional challenges. The objective of this review is to assess the available published information about the impact of different aspects of management on the outcome of patients with BSI, and, specifically, the importance of infectious diseases specialists (IDS) consultation. The impact of management by IDS on different aspects, including interpretation of newer rapid techniques, early evaluation and treatment, and follow up, are reviewed. Overall, the available data suggest that IDS intervention improves the management and outcome of patients with BSI, either through consultation or structured unsolicited interventions in the context of multidisciplinary bacteraemia programmes.


Author(s):  
Minh-Duy Phan ◽  
Kate M. Peters ◽  
Laura Alvarez Fraga ◽  
Steven C. Wallis ◽  
Steven Hancock ◽  
...  

Escherichia coli ST131 is a recently emerged antibiotic resistant clone responsible for high rates of urinary tract and bloodstream infections. Despite its global dominance, the precise mechanisms that have driven the rapid dissemination of ST131 remain unknown. Here, we show that the plasmid-associated resistance gene encoding the AAC(6’)-Ib-cr enzyme that inactivates the fluoroquinolone antibiotic ciprofloxacin is present in >70% of strains from the most rapidly expanding subgroup of multidrug resistant ST131. Using a series of genome-edited and plasmid-cured isogenic strains, we demonstrate that the aac(6’)-Ib-cr gene confers a selective advantage on ST131 in the presence of ciprofloxacin, even in strains containing chromosomal GyrA and ParC FQ-resistance mutations. Further, we identify a pattern of emerging carbapenem resistance in other common E. coli clones carrying both aac(6’)-Ib-cr and chromosomal FQ-resistance mutations, suggesting this dual resistance combination may also impart a selective advantage on these non-ST131 antibiotic resistant lineages.


2020 ◽  
Vol 75 (12) ◽  
pp. 3665-3674 ◽  
Author(s):  
Christina Routsi ◽  
Aikaterini Gkoufa ◽  
Kostoula Arvaniti ◽  
Stelios Kokkoris ◽  
Alexandros Tourtoglou ◽  
...  

Abstract Background De-escalation of empirical antimicrobial therapy, a key component of antibiotic stewardship, is considered difficult in ICUs with high rates of antimicrobial resistance. Objectives To assess the feasibility and the impact of antimicrobial de-escalation in ICUs with high rates of antimicrobial resistance. Methods Multicentre, prospective, observational study in septic patients with documented infections. Patients in whom de-escalation was applied were compared with patients without de-escalation by the use of a propensity score matching by SOFA score on the day of de-escalation initiation. Results A total of 262 patients (mean age 62.2 ± 15.1 years) were included. Antibiotic-resistant pathogens comprised 62.9%, classified as MDR (12.5%), extensively drug-resistant (49%) and pandrug-resistant (1.2%). In 97 (37%) patients de-escalation was judged not feasible in view of the antibiotic susceptibility results. Of the remaining 165 patients, judged as patients with de-escalation possibility, de-escalation was applied in 60 (22.9%). These were matched to an equal number of patients without de-escalation. In this subset of 120 patients, de-escalation compared with no de-escalation was associated with lower all-cause 28 day mortality (13.3% versus 36.7%, OR 0.27, 95% CI 0.11–0.66, P = 0.006); ICU and hospital mortality were also lower. De-escalation was associated with a subsequent collateral decrease in the SOFA score. Cox multivariate regression analysis revealed de-escalation as a significant factor for 28 day survival (HR 0.31, 95% CI 0.14–0.70, P = 0.005). Conclusions In ICUs with high levels of antimicrobial resistance, feasibility of antimicrobial de-escalation was limited because of the multi-resistant pathogens isolated. However, when de-escalation was feasible and applied, it was associated with lower mortality.


2015 ◽  
Vol 60 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Daniela Minerdi ◽  
Ivan Zgrablic ◽  
Silvia Castrignanò ◽  
Gianluca Catucci ◽  
Claudio Medana ◽  
...  

ABSTRACTAntimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics;Acinetobacterspp. are a good example of this. We report here thatAcinetobacter radioresistenshas a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR)Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitiveEscherichia coliBL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance.


Author(s):  
Neta Petersiel ◽  
Assa Sherman ◽  
Mical Paul

Abstract Background The mortality toll of nosocomial infections drives infection control efforts. We aimed to assess the contemporary mortality associated with nosocomial bloodstream infections (BSIs). Methods Retrospective propensity-matched cohort study conducted in one hospital in Israel between 1/2010-12/2020. Adults &gt;18 years old with nosocomial BSI were matched to controls using nearest neighbor matching of the propensity score (PS) for nosocomial BSI. We assessed all-cause mortality at 30 days, 90 days and survival up to 1 year starting on the BSI day or matched hospital day among controls; and the functional and cognitive change between admission and discharge using the Norton score among patients discharged alive. Residual differences between matched groups were addressed through Cox regression for 1-year survival. Results A total of 1361 patients with nosocomial BSI were matched to 1361 patients without BSI. Matching achieved similar patient groups, with small differences remaining in the Charlson score, albumin and hemoglobin levels. At 90 days, mortality was higher among patients with BSI (odds ratio 3.36, 95% confidence intervals 2.77-4.07). Odds ratios were higher when the BSI was caused by multidrug-resistant bacteria (OR 5.22, 95% CI 3.3-8.26) and with inappropriate empirical antibiotics in the first 24 hours (OR 3.85, 2.99-4.94). Following full adjustment, the hazard ratio for 1-year mortality with nosocomial BSI was 2.28 (1.98-2.62). The Norton score declined more frequently among patients with BSI (OR 2.27, 1.81-2.86) Conclusions Nosocomial BSIs incur a highly significant mortality toll, particularly when caused by multidrug-resistant bacteria. Among hospital survivors, BSIs are associated with functional decline.


2020 ◽  
Author(s):  
Daihai Mo ◽  
Hongyun Ma ◽  
Zhen Wang ◽  
Jiayang Hu ◽  
Gang Li

Abstract Background The effect of preoperative biliary drainage (PBD) on the short-term outcomes after pancreaticoduodenectomy (PD) remains controversial. Methods 164 consecutive patients with obstructive jaundice who underwent PD in our center from 2016 to 2017 were retrospectively analyzed. The 120 patients who underwent PBD prior to PD (PBD group) were compared with 44 patients who did not (DS group). The short-term outcomes include overall morbidity, severe complications, postoperative pancreatic fistula(POPF), postpancreatectomy hemorrhage(PPH), intra-abdominal abscess (IAA), sepsis, delayed gastric emptying (DGE), postoperative hospital stay and 90-day death were assesed. Results There were no significant statistical differences in overall morbidity, severe complications, POPF, PPH, IAA, LOS and ninety-day mortality between two groups. The incidence of DGE in PBD group was significantly lower than that in DS group (4.5% vs. 19.2%, P = 0.021). Multivariate regression analysis showed that age over 66 years (OR: 3.094,95% CI: 1.268-7.55) and direct surgery (OR: 5.298, 95% CI: 1.176-23.865) were independent risk factors for DGE. Conclusion For patients with obstructive jaundice, preoperative biliary drainage is independently associated with delayed gastric emptying, but does not affect the overall morbidity and mortality of patients undergoing PD.


Sign in / Sign up

Export Citation Format

Share Document