scholarly journals Characterization of epithelial cells, connective tissue cells and immune cells in human upper airway mucosa by immunofluorescence multichannel image cytometry: a pilot study

Author(s):  
Aris I. Giotakis ◽  
Jozsef Dudas ◽  
Rudolf Glueckert ◽  
Daniel Dejaco ◽  
Julia Ingruber ◽  
...  

AbstractEpithelial, connective tissue and immune cells contribute in various ways to the pathophysiology of chronic rhinosinusitis (CRS). However, data of their distribution in upper airway mucosa are sparse. We aimed to provide quantitative, purely informative data on the distribution of these cell lineages and their coexpression patterns, which might help identifying, e.g., cells in the epithelium undergoing through epithelial–mesenchymal transition (EMT). For this purpose, we used immunofluorescence multichannel image cytometry (IMIC). We examined fixed paraffin-embedded tissue samples (FFPE) of six patients with chronic rhinosinusitis (CRS) and of three patients without CRS (controls). The direct-conjugated antibodies pancytokeratin, vimentin and CD45/CD18 were used for coexpression analysis in epithelial layer and lamina propria. Image acquisition and analysis were performed with TissueFAXS and StrataQuest, respectively. To distinguish positive from negative expression, a ratio between cell-specific immunostaining intensity and background was developed. Isotype controls were used as negative controls. Per patient, a 4.5-mm2 tissue area was scanned and a median of 14,875 cells was recognized. The most common cell types were cytokeratin-single-positive (26%), vimentin-single-positive (13%) and CD45/CD18-single-positive with CD45/CD18–vimentin-double-positive cells (29%). In the patients with CRS, CD45/CD18-single-positive cells were 3–6 times higher compared to the control patients. In the epithelial layer, cytokeratin–vimentin-double-positive EMT cells were observed 3–5 times higher in the patients with CRS than in the control patients. This study provided quantitative data for the distribution of crucial cell types in CRS. Future studies may focus on the distribution and coexpression patterns of different immune cells in CRS or even cancer tissue.

2019 ◽  
Vol 7 (2) ◽  
pp. 22 ◽  
Author(s):  
Akira Kanda ◽  
Kenji Kondo ◽  
Naoki Hosaka ◽  
Yoshiki Kobayashi ◽  
Dan Van Bui ◽  
...  

Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a refractory upper airway disease, accompanied mainly by eosinophilia and/or asthma. In addition, the disease correlates with a high rate of hyposmia, following a marked infiltration of eosinophils into the inflamed site, the paranasal sinus. Although eosinophils are known to contribute to the development of hyposmia and CRSwNP pathology, the underlying mechanisms remain unclear. This study aimed to investigate whether eosinophilic upper airway inflammation induces hyposmia and CRSwNP in a murine model using an adoptive transfer system. Methods: To induce eosinophilic rhinosinusitis, splenocytes, including a high proportion (over 50%) of activated eosinophils (SPLhEos), were collected from interleukin-5 transgenic mice following double intraperitoneal injections of antigens, such as ovalbumin, house dust mite, or fungus. Activated SPLhEos with corresponding antigens were then transferred into the nasal cavity of recipient mice, which were sensitized and challenged by the corresponding antigen four times per week. Olfactory function, histopathological, and computed tomography (CT) analyses were performed 2 days after the final transfer of eosinophils. Results: Hyposmia was induced significantly in mice that received SPLhEos transfer compared with healthy and allergic mice, but it did not promote morphological alteration of the paranasal sinus. Pathological analysis revealed that epithelial layer injury and metaplasia similar to polyps, with prominent eosinophil infiltration, was induced in recipient tissue. However, there was no nasal polyp development with interstitial edema that was similar to those recognized in human chronic rhinosinusitis. Conclusions: This study supports the previously unsuspected contribution of eosinophils to CRS development in the murine model and suggests that murine-activated eosinophilic splenocytes contribute to the development of hyposmia due to more mucosal inflammation than physical airway obstruction and epithelial layer injury with convex lesions.


2018 ◽  
Vol 56 (6) ◽  
pp. 909-918 ◽  
Author(s):  
Philippe Willems ◽  
Ellen De Langhe ◽  
Jolien Claessens ◽  
René Westhovens ◽  
Erna Van Hoeyveld ◽  
...  

AbstractBackground:Antinuclear antibodies (ANAs) are useful for the diagnosis of ANA-associated systemic rheumatic disease (AASRD). The objective of this study was the evaluation of an immunoassay that detects antibodies to a mixture of 17 antigens as an alternative to indirect immunofluorescence (IIF).Methods:Nine thousand eight hundred and fifty-six consecutive patients tested for ANAs were tested by IIF and EliA connective tissue disease screen (Thermo-Fisher). Medical records were reviewed for 2475 patients, including all patients that tested positive/equivocal by either test and a selection of 500 patients that tested negative.Results:Concordance between IIF and EliA was 83.1%. AASRD was found in 12.8% of IIF-positive patients, 30.2% of EliA-positive patients and 0.4%, 46.6%, 5.8% and 3.0% of patients that tested, respectively, double negative, double positive, single positive for EliA and single positive for IIF. The association with AASRD increased with increasing antibody level. IIF and EliA were positive in, respectively, 90.4% and 69.9% of systemic lupus erythematosus (n=83), 100% and 84.1% of systemic sclerosis (n=63), 86.7% and 93.3% of Sjögren’s syndrome (n=45), 88.2% and 52.9% of polymyositis/dermatomyositis (n=17), and in all cases of mixed connective tissue disease (n=8). The specificity was projected to be 94%–96% for EliA and 86% for IIF. When all AASRDs were taken together, the areas under the curve of receiver operator curves were similar between IIF and EliA.Conclusions:The positive predictive value for AASRD was higher for EliA than for IIF, but, depending on the disease, EliA might fail to detect antibodies that are detected by IIF. Combining immunoassay with IIF adds value.


2019 ◽  
Vol 8 (11) ◽  
pp. 1809 ◽  
Author(s):  
Diana Vlad ◽  
Silviu Albu

Nitric oxide (NO) has emerged as an important regulator of upper airway inflammation, mainly as part of the local naso-sinusal defense mechanisms. Increased arginase activity can reduce NO levels by decreasing the availability of its precursor, L-arginine. Chronic rhinosinusitis (CRS) has been associated with low levels of nasal nitric oxide (nNO). Thus, the present study investigates the activity of arginase I (ARG1) and II (ARG2) in CRS and its possible involvement in the pathogenesis of this disease. Under endoscopic view, tissue samples of pathologic (n = 36) and normal (n = 29) rhinosinusal mucosa were collected. Arginase I and II mRNA levels were measured using real-time PCR. Our results showed low arginase I activity in all samples. The levels of ARG2 were significantly higher in patients with chronic rhinosinusitis compared to the control group (fold regulation (FR) 2.22 ± 0.42 vs. 1.31 ± 0.21, p = 0.016). Increased ARG2 expression was found in patients with CRS without nasal polyposis (FR 3.14 ± 1.16 vs. 1.31 ± 0.21, p = 0.0175), in non-allergic CRS (FR 2.55 ± 0.52 vs. 1.31 ± 0.21, p = 0.005), and non-asthmatic CRS (FR 2.42 ± 0.57 vs. 1.31 ± 0.21, p = 0.028). These findings suggest that the upregulation of ARG2 may play a role in the pathology of a distinctive phenotype of CRS.


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 607
Author(s):  
Rudolfs Janis Viksne ◽  
Gunta Sumeraga ◽  
Mara Pilmane

Background and Objectives: Chronic rhinosinusitis (CRS) is a condition that affects as much as 10.9% of the population and, along with presence of nasal polyps, is associated with significant morbidity and decreased quality of life. Studies on molecular pathways that have been activated in nasal polyp tissue are mainly based on cytokine concentration detection. Therefore, our aim is to investigate the complex appearance, relative distribution and interlinks of IL-1, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12 and Ki 67 in chronic rhinosinusitis with nasal polyps (CRSwNP) affected human nasal mucosa. Materials and Methods: Samples of nasal polyps were obtained from 12 patients with previously diagnosed CRSwNP and no prior surgery. Control group consisted of samples from 17 otherwise healthy individuals with isolated nasal septum deviation. Tissues were stained for IL-1, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12 and Ki67 immunohistochemically. Non-parametric statistic, Mann–Whitney U test and Spearman’s rank correlation coefficient were used. Results: All factors, except connective tissue cytokine IL-10 and proliferation marker Ki-67, had increased presence in connective tissue and decreased presence in epithelium of nasal polyps when compared to controls. Very strong and strong positive correlations between factors were observed. Conclusions: Decreased appearance of IL-1α, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12 positive structures in the nasal epithelium with selective increase of IL-1α and IL-12 in nasal subepithelial connective tissue characterize the cytokine endotype with dysfunctional epithelial barrier and local stimulation of immune response in the connective tissue in case of chronic rhinosinusitis with polyps. Decrease of IL-6 in both—epithelium and connective tissue with strong correlation between it and IL-7 and IL-10 in connective tissue suggests significant stimulation of this regulatory cytokine and, possibly, the important role in pathogenesis of the development in nasal polyps. Correlations between Ki67 and cytokines indicate possible involvement of IL-4, IL-7 and IL-12 in regulation of cellular proliferation.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A586-A586
Author(s):  
Sara Schad ◽  
Andrew Chow ◽  
Heng Pan ◽  
Levi Mangarin ◽  
Roberta Zappasodi ◽  
...  

BackgroundCD4 and CD8 T cells are genetically and functionally distinct cell subsets of the adaptive immune system that play pivotal roles in immune surveillance and disease control. During development in the thymus, transcription factors ThPOK and Runx3 regulate the differentiation and maturation of these two lineages into single positive T cells that enter the periphery with mutually exclusive expression of either the CD4 or CD8 co-receptor.1–2 Despite our expectation that these two cell fates are fixed, mature CD4+CD8+ double positive (DP) T cells have been described in the context of numerous immunological responses, including cancer, but their molecular and functional properties and therapeutic relevance remain controversial and largely unknown.3–5MethodsOur lab has identified and characterized a heterogenous DP T cell population in murine and human melanoma tumors comprised of CD4 and CD8 T cells re-expressing the opposite co-receptor and a parallel uptake in the opposite cell type’s phenotype and function. Using CD4 (Trp1) and CD8 (Pmel) transgenic TCR T cells specific to B16 melanoma antigens gp75 and gp100 respectively, we demonstrate the re-expression of the opposite co-receptor following adoptive T cell transfer in B16 melanoma tumor bearing mice.ResultsSpecifically, up to 50% of transferred CD4 Trp1 T cells will re-express CD8 to become a DP T cell in the tumor microenvironment. Further, these CD4 derived DP T cells upregulate CD8 lineage regulator Runx3 and cytolytic genes Gzmb, Gzmk, and Prf1 to become potent cytotoxic T cells. Alternatively, a subset of CD8 Pmel T cells differentiate into DP T cells characterized by the increased expression of CD4, ThPOK, and regulatory marker FoxP3 (figure 1). In addition, we utilized 10x single cell and ATAC sequencing to further characterize these divergent DP T cell populations among open repertoire T cells isolated from murine and human melanoma tumors.ConclusionsOur findings highlight the capability of single positive T cells to differentiate in response to antigen and local stimuli into novel T cell subsets with polyfunctional characteristics. The resulting cell subsets will potentially affect the tumor microenvironment in distinct ways. Our studies may inform therapeutic approaches to identify antigen specific T cells as well as innovative signaling pathways to target when genetically engineering T cells to optimize cytotoxic function in the setting of adoptive cell therapy.Ethics ApprovalThe human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107ReferencesEllmeier W, Haust L & Tschismarov R. Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013;70:4537–4553.Luckey MA, et al. The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology 2014; 15, 638–645.Bohner P, et al. Double positive CD4(+)CD8(+) T Cells are enriched in urological cancers and favor T Helper-2 polarization. Front Immunol 2019; 10, 622.Nascimbeni M, Shin E-C, Chiriboga L, Kleiner DE & Rehermann B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004;104:478–486.Nishida K, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma. Int Immunol 2020;32:347–357.


2020 ◽  
Vol 21 (24) ◽  
pp. 9585
Author(s):  
Melania Dovizio ◽  
Patrizia Ballerini ◽  
Rosa Fullone ◽  
Stefania Tacconelli ◽  
Annalisa Contursi ◽  
...  

Platelets contribute to several types of cancer through plenty of mechanisms. Upon activation, platelets release many molecules, including growth and angiogenic factors, lipids, and extracellular vesicles, and activate numerous cell types, including vascular and immune cells, fibroblasts, and cancer cells. Hence, platelets are a crucial component of cell–cell communication. In particular, their interaction with cancer cells can enhance their malignancy and facilitate the invasion and colonization of distant organs. These findings suggest the use of antiplatelet agents to restrain cancer development and progression. Another peculiarity of platelets is their capability to uptake proteins and transcripts from the circulation. Thus, cancer-patient platelets show specific proteomic and transcriptomic expression patterns, a phenomenon called tumor-educated platelets (TEP). The transcriptomic/proteomic profile of platelets can provide information for the early detection of cancer and disease monitoring. Platelet ability to interact with tumor cells and transfer their molecular cargo has been exploited to design platelet-mediated drug delivery systems to enhance the efficacy and reduce toxicity often associated with traditional chemotherapy. Platelets are extraordinary cells with many functions whose exploitation will improve cancer diagnosis and treatment.


1947 ◽  
Vol s3-88 (2) ◽  
pp. 135-150
Author(s):  
J. W. SLUITER ◽  
G. J. VAN OORDT

1. The relative volumes of the testes and their components of 31 cockerels, 2-200 days old, were calculated and compared with the size of their increasing head appendages (Text-figs. 1a-d, 2); in addition, the effect of gestyl-administration on testes of cockerels of this age was investigated. 2. Several types of interstitial testis-cells could be distinguished morphologically and physiologically (Text-figs. 3-6 and Pl. 1); these cell-types were studied with different techniques and counted separately. 3. The main types of the interstitial cells are: (a) Lipoid cells, totally packed with lipoid globules. These cells, which are considered by many authors as fully developed Leydig cells, are not directly connected with the production of the male sex hormone; perhaps they have a secondary function in this respect, as cholesterolderivatives are stored in these cells (Pl. 1, Text-fig. 3a). (b) Secretory cells, characterized by the absence of lipoid vacuoles and the presence of numerous granular and filamentous mitochondria. These secretory cells, which produce the male sex hormone, can be divided into secretory cells A (Text-fig. 6a) without, and secretory cells B with, one large vacuole (Text-figs. 6b, 6c, 6d). 4. A considerable and partly intercellular storage of lipoids may take place at any age in the intertubular connective tissue (Text-figs. 3-4 and Pl. 1). 5. The number of the lipoid cells depends on the nutritive conditions of the animal and the development of its testes (Text-fig. 7). 6. In older cockerels most of the glandular cells lose their secretory function and pass over into lipoid storing cells. 7. Therefore we agree with Benoit, when he denies the occurrence of a ‘secretion de luxe’, but we cannot accept the presence of a ‘parenchyme de luxe’ in the testes of older cockerels.


Author(s):  
Leena P. Bharath ◽  
Barbara S. Nikolajczyk

The biguanide metformin is the most commonly used antidiabetic drug. Recent studies show that metformin not only improves chronic inflammation by improving metabolic parameters but also has a direct anti-inflammatory effect. In light of these findings, it is essential to identify the inflammatory pathways targeted by metformin to develop a comprehensive understanding of the mechanisms of action of this drug. Commonly accepted mechanisms of metformin action include AMPK activation and inhibition of mTOR pathways, which are evaluated in multiple diseases. Additionally, metformin's action on mitochondrial function and cellular homeostasis processes such as autophagy, is of particular interest because of the importance of these mechanisms in maintaining cellular health. Both dysregulated mitochondria and failure of the autophagy pathways, the latter of which impair clearance of dysfunctional, damaged, or excess organelles, affect cellular health drastically and can trigger the onset of metabolic and age-related diseases. Immune cells are the fundamental cell types that govern the health of an organism. Thus, dysregulation of autophagy or mitochondrial function in immune cells has a remarkable effect on susceptibility to infections, response to vaccination, tumor onset, and the development of inflammatory and autoimmune conditions. Here we summarize the latest research on metformin's regulation of immune cell mitochondrial function and autophagy as evidence that new clinical trials on metformin with primary outcomes related to the immune system should be considered to treat immune-mediated diseases over the near term.


Sign in / Sign up

Export Citation Format

Share Document