scholarly journals One-step CZT electroplating from alkaline solution on flexible Mo foil for CZTS absorber

Author(s):  
C. Marchi ◽  
G. Panzeri ◽  
L. Pedrazzetti ◽  
M. I. Khalil ◽  
A. Lucotti ◽  
...  

AbstractIn this work, Cu-Zn-Sn (CZT) is co-electrodeposited onto a flexible Mo substrate exploiting an alkaline bath (pH 10). The plating solution is studied by cyclic voltammetry, highlighting the effects of potassium pyrophosphate (K4P2O7) and EDTA-Na2 on the electrochemical behavior and stability of the metallic ionic species. The optimized synthesis results in a homogeneous precursor layer, with composition Cu 44 ± 2 at. %, Zn 28 ± 1 at. %, and Sn 28 ± 2 at. %. Soft and reactive annealing are employed respectively to promote intermetallic phase formation and sulfurization of the precursor to obtain CZTS. Microstructural (XRD, Raman), morphological (SEM), and compositional (EDX, XRF) characterization is carried out on CZT and CZTS films, showing a minor presence of secondary phases. Finally, photo-assisted water splitting tests are performed considering a CZTS/CdS/Pt photoelectrode, showing a photocurrent density of 1.01 mA cm−2 at 0 V vs. RHE under 1 sun illumination. Graphical abstract

2013 ◽  
Vol 212 ◽  
pp. 15-20
Author(s):  
Kazimierz J. Ducki ◽  
Jacek Mendala ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the precipitation process of the secondary phases in an Fe-Ni superalloy of A-286 type has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using TEM and X-ray diffraction methods. The X-ray phase analyses performed on the isolates were obtained by anodic dissolution of the solid samples. After solution heat treatment the alloy has the structure of twinned austenite with a small amount of undissolved precipitates, such as carbide TiC, carbonitride TiC0.3N0.7, nitride TiN0.3, carbosulfide Ti4C2S2, Laves phase Ni2Si, and boride MoB. The application of ageing causes precipitation processes of γ-Ni3(Al,Ti), G (Ni16Ti6Si7), η (Ni3Ti), β (NiTi) and σ (Cr0.46Mo0.40Si0.14) intermetallic phases, as well as the carbide M23C6. It was found that the main phase precipitating during alloy ageing was the γ intermetallic phase.


2012 ◽  
Vol 22 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Ryan J. Rabett ◽  
Philip J. Piper

For many decades Palaeolithic research viewed the development of early modern human behaviour as largely one of progress down a path towards the ‘modernity’ of the present. The European Palaeolithic sequence — the most extensively studied — was for a long time the yard-stick against which records from other regions were judged. Recent work undertaken in Africa and increasingly Asia, however, now suggests that the European evidence may tell a story that is more parochial and less universal than previously thought. While tracking developments at the large scale (the grand narrative) remains important, there is growing appreciation that to achieve a comprehensive understanding of human behavioural evolution requires an archaeologically regional perspective to balance this.One of the apparent markers of human modernity that has been sought in the global Palaeolithic record, prompted by finds in the European sequence, is innovation in bonebased technologies. As one step in the process of re-evaluating and contextualizing such innovations, in this article we explore the role of prehistoric bone technologies within the Southeast Asian sequence, where they have at least comparable antiquity to Europe and other parts of Asia. We observe a shift in the technological usage of bone — from a minor component to a medium of choice — during the second half of the Last Termination and into the Holocene. We suggest that this is consistent with it becoming a focus of the kinds of inventive behaviour demanded of foraging communities as they adapted to the far-reaching environmental and demographic changes that were reshaping this region at that time. This record represents one small element of a much wider, much longerterm adaptive process, which we would argue is not confined to the earliest instances of a particular technology or behaviour, but which forms part of an on-going story of our behavioural evolution.


Author(s):  
Wenwan Zhang ◽  
Yufei Cheng ◽  
Junfeng Zhao ◽  
Qiujie Li ◽  
Jiawei Wang ◽  
...  

Abstract Tin monosulfide (SnS), as a narrow band gap semiconductor for visible-light harvesting, nevertheless the easy formation of secondary phases such as Sn2S3 and SnS2 severely restricts its photoelectrochemical properties. Herein, we proposed a novel two-step strategy to fabricate phase-pure SnS photoelectrode with tunable conductivity on Ti foil substrate and carefully investigated the formation mechanism and photoelectrochemical properties. The tunable conductivity is determined by Na2SO4 pretreatment before annealing, which is supported by the EDS, XPS, and EPR characterizations. Na+ adsorbed to the edge of the precursor SnS2 nanosheets forming a dangling bond adsorption will protect S2- against reacting with the trace oxygen in the CVD system within a certain temperature range (< 525 ℃), thereby reducing the generation of S vacancies to adjust the S/Sn ratio and further regulating the conductivity type. Moreover, the anodic photocurrent density of SnS thin films was about 0.32 mA/cm2 at 1.23 V vs. RHE with the separation and injection efficiency of 1.22 % and 72.78 % and a maximum cathodic photocurrent density can reach approximately -0.36 mA/cm2 at 0 V vs. RHE with the separation and injection efficiency 1.15 % and 5.44 % respectively. The method shown in this work provides an effective approach to control the electrical conductivity of SnS thin films with considerable photocurrent response for phase-pure SnS.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2121
Author(s):  
Vinsensia Ade Sugiawati ◽  
Florence Vacandio ◽  
Thierry Djenizian

All-solid-state batteries were fabricated by assembling a layer of self-organized TiO2 nanotubes grown on as anode, a thin-film of polymer as an electrolyte and separator, and a layer of composite LiFePO4 as a cathode. The synthesis of self-organized TiO2 NTs from Ti-6Al-4V alloy was carried out via one-step electrochemical anodization in a fluoride ethylene glycol containing electrolytes. The electrodeposition of the polymer electrolyte onto anatase TiO2 NTs was performed by cyclic voltammetry. The anodized Ti-6Al-4V alloys were characterized by scanning electron microscopy and X-ray diffraction. The electrochemical properties of the anodized Ti-6Al-4V alloys were investigated by cyclic voltammetry and chronopotentiometry techniques. The full-cell shows a high first-cycle Coulombic efficiency of 96.8% with a capacity retention of 97.4% after 50 cycles and delivers a stable discharge capacity of 63 μAh cm−2 μm−1 (119 mAh g−1) at a kinetic rate of C/10.


1994 ◽  
Vol 72 (7) ◽  
pp. 1691-1698 ◽  
Author(s):  
Mariléa Manzini ◽  
Andrzej Lasia

The electroreduction of Zn2+ was studied in propylene carbonate (PC), acetonitrile (ACN), and hexamethylphosphoramide (HMPA) on mercury at various concentrations of tetraethylammonium perchlorate as a supporting electrolyte using dc polarography, cyclic voltammetry, chronoamperometry, and ac polarography. It was found that in PC and ACN the electroreduction process proceeds in one step. In HMPA, however, the electroreduction proceeds through a CEE mechanism in which a chemical reaction is followed by a charge transfer in two steps. The heterogeneous rate constants, corrected for the double layer effects, decrease with increase in the solvent donor number. The electroreduction process proceeds through the cation transfer mechanism.


Surfaces ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 131-144 ◽  
Author(s):  
Mahshid Poornajar ◽  
Nhat Nguyen ◽  
Hyo-Jin Ahn ◽  
Markus Büchler ◽  
Ning Liu ◽  
...  

Hematite is a low band gap, earth abundant semiconductor and it is considered to be a promising choice for photoelectrochemical water splitting. However, as a bulk material its efficiency is low because of excessive bulk, surface, and interface recombination. In the present work, we propose a strategy to prepare a hematite (α-Fe2O3) photoanode consisting of hematite nanorods grown onto an iron oxide blocking layer. This blocking layer is formed from a sputter deposited thin metallic iron film on fluorine doped tin oxide (FTO) by using cyclic voltammetry to fully convert the film into an anodic oxide. In a second step, hematite nanorods (NR) are grown onto the layer using a hydrothermal approach. In this geometry, the hematite sub-layer works as a barrier for electron back diffusion (a blocking layer). This suppresses recombination, and the maximum of the incident photon to current efficiency is increased from 12% to 17%. Under AM 1.5 conditions, the photocurrent density reaches approximately 1.2 mA/cm2 at 1.5 V vs. RHE and the onset potential changes to 0.8 V vs. RHE (using a Zn-Co co-catalyst).


1996 ◽  
Vol 34 (3-4) ◽  
pp. 549-556 ◽  
Author(s):  
P. J. Bliss ◽  
T. J. Schulz ◽  
T. Senger ◽  
R. B. Kaye

To identify factors affecting olfactometry panel performance in the measurement of environmental odours, a data bank of odour threshold measurements including 923 individual panel tests on environmental odours and 145 tests on standards were analysed statistically. There is an evident decrease in olfactory sensitivity to environmental odours with age. The group threshold tends to be one step lower for a 25 year increase in average age of panel members for Type I odours (piggery, feedlot, landfill and mushroom composting) and for 36 years increase for Type II odours (sewage and industrial coke works). The threshold for N-butanol tends to be 1 step lower for an increase of 15 years in age. People who are over 40 years old exhibited a greater variation than younger people. Although there was a minor gender difference in the sensitivity to butanol standard, it was not statistically significant (mean natural logarithm butanol threshold was 3.65 for males and 3.84 for females). Similar minor differences were exhibited in Confidence Index (CI), 1.72 for females (std. dev. 0.73) and 1.81 for males (std. dev. 0.77). Using “guess and correct” as criterion to determine individual thresholds in the forced choice olfactometry, the mean natural logarithm of ppb butanol is 1.365 lower than that for “certain and correct”. The standard deviation for “guess” and “certain” criteria were 1.093 and 0.911 respectively. The “certainty” criterion gave a better repeatability than the “guess” criterion.


1988 ◽  
Vol 116 ◽  
Author(s):  
P. Pirouz ◽  
F. Ernst ◽  
T. T. Cheng

AbstractIn the growth of thin films of compound semiconductors on (001) silicon substrates by vapor deposition techniques, it is usual to employ a two-step process. In this method, an initial (buffer) layer is first grown at a relatively low temperature; once a continuous film has formed on the substrate, its temperature is raised for the subsequent bulk growth. Carrying out the growth in a one-step process by heating the substrate to the final temperature before allowing the gases into the CVD reactor usually results in a polycrystalline aggregate. In this paper, classical nucleation and growth mechanisms are used to explain-the reasons for the different morphology of the one-step and two-step growth films.The heteroepitaxial films on (001) silicon often contain a high density of stacking faults and twins. The occurrence of these planar defects is usually attributed to stresses that arise from lattice mismatch and/or thermal mismatch (differences in coefficients of thermal expansion) between the substrate and the epilayer. It is argued that, in fact, mismatch stresses play a minor role in the generation of planar defects. Instead, an alternative mechanism for their formation is proposed which is based on the facetted shape of nuclei and errors in stacking of {111} planes which occur during deposition on the facets.Conventional and high resolution transmission electron microscopy have been used to investigate three systems grown by CVD or MOCVD: SiC/Si, GaAs/Si and GaP/Si. These systems have different lattice and thermal mismatches, and the results support the proposed model for the formation of defects.


Sign in / Sign up

Export Citation Format

Share Document