scholarly journals An investigation of qualitative variations of groundwater resources under municipal wastewater recharge using numerical and laboratory models, Nazarabad plain, Iran

Author(s):  
Nezhla Amiri ◽  
Mohammad Nakhaei

AbstractMunicipal wastewater irrigation induces elevated concentrations of heavy metals in the soil which their further leaching leads to groundwater contamination in the long run. In this study, both column experiment and 5-year prediction modeling using HYDRUS-1D were conducted to investigate the probable adsorption and transport of 10 different metals including As, Ba, Cr, Cu, Mo, Ni, Pb, Rb, Sr, and Zn in an alkaline soil from Nazarabad plain in Iran which has been irrigated with treated urban wastewater for several years. The obtained results revealed that reaching the equilibrium rate for the mentioned elements during 1825 days (= 5 years) was as follows: Mo > Cr > Rb > Zn > Ni > Ba> Sr > Pb > As> Cu. The finding implies that molybdenum (Mo) and copper (Cu) are the most mobile and the most adsorbent heavy metals in the soil, respectively. Higher mobility poses the greater potential risk of leaching into groundwater resources. Overall, experimental and numerical modelings had good accordance and were capable of describing the actual condition.

Author(s):  
Stanislav Dushkin

The article discusses the issues of reducing the level of technogenic safety of the negative impact of urban wastewater sludge on the environment by removing heavy metals using humic substances. It is noted that the technogenic and ecological problem requires an urgent solution through the formation of new effective methods of treatment (neutralization and dehydration) and further disposal of urban wastewater sludge. Silt sites are a source of pollution of soil, groundwater and surface water object and air. A new method for removing heavy metals from municipal wastewater sludge using humic substances has been developed. It was found that humic substances have a sorption capacity in relation to heavy metals. As a reagent for removing heavy metals from urban wastewater sludge, it is proposed to use the product of processing lignite and peat with alkali using a carbon-alkali reagent, which makes it possible to reduce the concentration of heavy metals to such concentrations that the sludge can be used as fertilizer in agriculture.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 860
Author(s):  
Konstantinos Simeonidis ◽  
Manassis Mitrakas

Elevated concentrations of heavy metals in drinking water resources and industrial or urban wastewater pose a serious threat to human health and the equilibrium of ecosystems [...]


2018 ◽  
Vol 78 (3) ◽  
pp. 644-654 ◽  
Author(s):  
J. Olsson ◽  
S. Schwede ◽  
E. Nehrenheim ◽  
E. Thorin

Abstract A mix of microalgae and bacteria was cultivated on pre-sedimented municipal wastewater in a continuous operated microalgae-activated sludge process. The excess material from the process was co-digested with primary sludge in mesophilic and thermophilic conditions in semi-continuous mode (5 L digesters). Two reference digesters (5 L digesters) fed with waste-activated sludge (WAS) and primary sludge were operated in parallel. The methane yield was slightly reduced (≈10%) when the microalgal-bacterial substrate was used in place of the WAS in thermophilic conditions, but remained approximately similar in mesophilic conditions. The uptake of heavy metals was higher with the microalgal-bacterial substrate in comparison to the WAS, which resulted in higher levels of heavy metals in the digestates. The addition of microalgal-bacterial substrate enhanced the dewaterability in thermophilic conditions. Finally, excess heat can be recovered in both mesophilic and thermophilic conditions.


2015 ◽  
Vol 17 (1) ◽  
pp. 148-161

<div> <p>Two greenhouse pot experiments were conducted in Agrinion, Greece. The impact of treated municipal wastewater (TMWW) and sludge (i) on the growth of <em>Lactuca sativa</em> L. var Longifolia (lettuce) and (ii) on the extent of soil pollution with heavy metals was studied. Soil pollution was assessed by calculating the Pollution Load Index (PLI). Both of these experiments were conducted, using a randomized block design in four replications and seven treatments, respectively, as follows: (a) Experiment A: study of the effect of treated municipal wastewater (TMWW): [Control, 20%, 40%, 60%, 80%, 100%, (100%+30 t/ha Sludge)] and (b) Experiment B: Study of the effect of sludge (t/ha): 0, &nbsp;6, 12,&nbsp; 18, 24 , 30, (30+100%TMWW). The sludge affected significantly plant height and fresh and dry matter yield, as well as the dry matter N content of plants, while the TMWW affected significantly the dry matter yield and non-significantly the plant height. The pollution load index (PLI) was non-significant for both treatments (sludge and TMWW). According to PLI calibration scale, the soil was found to be slightly polluted with heavy metals under both treatments.</p> </div> <p>&nbsp;</p>


2021 ◽  
Vol 31 (3) ◽  
pp. 265-275
Author(s):  
Ewelina Płuciennik-Koropczuk ◽  
Martyna Myszograj ◽  
Sylwia Myszograj

Abstract The article presents lifestyle as an important factor determining the quantity and quality of municipal wastewater. The characteristic of wastewater in Poland has changed significantly in recent years. The qualitative characteristics of municipal wastewater indicate an increase of organic compounds and in the scope of micro-contaminants identified in them, e.g. nanoparticles, microplastics, pharmaceutical and personal care products or heavy metals. Therefore, the knowledge of parameters such as: BOD5, COD, total N, total P and suspension solids is no longer sufficient for the design and operation of wastewater treatment systems. Comprehensive research in this area is necessary to select those indicators that better describe the characteristics of wastewater.


Author(s):  
R. Edgecock ◽  
V. V. Bratishko ◽  
I. V. Zinchenko ◽  
S. H. Karpus ◽  
D. O. Milko ◽  
...  

Annotation Purpose. Summarize the regulatory and technological requirements for the production of organic (organo-mineral) fertilizers on the base of sewage sludge. Methods. Analysis and generalization of the requirements of regulatory documents on the management of organic waste and their use as raw materials for the production of organic fertilizers and soil improvers. Results. The current legislative, departmental and regulatory documentary base in Ukraine concerning the treatment of sediment resulting from biological sewage treatment at municipal wastewater treatment plants for its further use in agriculture as fertilizers is analysed. Indicators are identified and analysed to determine the possibility, feasibility, efficiency and scope of organic fertilizers produced using sewage sludge. The analysis of changes in the content of organic matter and total nitrogen in the sewage sludge during its storage at the sewage treatment plant sites is presented. The technological feasibility of using sludge of different shelf life in composting production has been determined. Conclusions 1. The regulatory framework of Ukraine contains a sufficiently complete list of indicators that should be met by organic raw materials (sewage sludge) for further use as organic fertilizers. Some of these indicators – bio security and heavy metals content – can be improved in the composting process of fertilizers. 2. Fresh sediment, as well as sediment accumulated in the last late autumn and winter periods, is of main value for use as a raw material in the production of organic fertilizers. 3. The use in the production of compost sludge stored on sludge sites for a period of half a year or more requires special control of the process of decontamination. In this case, it is advisable to use additional means of wastewater decontamination. Keywords: heavy metals, manure, humus, decontamination, composting, organic fertilizers, sewage sludge.


2012 ◽  
Vol 66 (2) ◽  
pp. 267-274 ◽  
Author(s):  
X. Dong ◽  
S. Zeng ◽  
J. Chen

Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.


Sign in / Sign up

Export Citation Format

Share Document